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ABSTRACT

We consider the implementation of a frontal code for the solution of large sparse unsymmetric linear systems
on a high-performance computer where data must be in the cache before arithmetic operations can be
performed on it. In particular, we show how we can modify the frontal solution algorithm to enhance the
proportion of arithmetic operations performed using Level 3 BLAS thus enabling better reuse of data in the
cache. We illustrate the effects of this on Silicon Graphics Power Challenge machines using problems which
arise in real engineering and industrial applications. ( 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The frontal solution scheme1—4 is a technique for the direct solution of the linear systems of
equations

AX"B (1)

where the n]n matrix A is large and sparse. B is an n]nrhs (nrhs*1) matrix of right-hand
sides and X is the n]nrhs solution matrix. The method is a variant of Gaussian elimination and
involves the factorization of a permutation of A which can be written as

A"PLUQ (2)

where P and Q are permutation matrices, and L and U are lower and upper triangular matrices,
respectively. The code MA42 developed by Duff and Scott4 for the Harwell Subroutine Library5
uses a frontal scheme for solving systems of the form (1) with A unsymmetric. MA42 includes an
option which allows the assembled matrix A to be input by rows. However, as illustrated by Duff
and Scott,6 the power of the frontal scheme is more apparent when the matrix A comprises
contributions from the elements of a finite-element discretization. That is, we can express A as the
sum of elemental matrices

A"

m
+
l/1

A(l) (3)
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where A(l) is non-zero only in those rows and columns that correspond to variables in the lth
element. We shall primarily be concerned with this case in the following. Our aim is to study the
performance of a frontal solver on a machine where data must be in the cache before being
operated upon.

In Section 2, we discuss salient features of the frontal scheme. One way of achieving efficiency in
the solution of linear equations is through the use of the Basic Linear Algebra Subprograms
(BLAS).7 The BLAS are subdivided into three levels. In each succeeding level (from 1 to 3) more
operations are performed for each data movement. Thus the best performance is obtained by the
Level 3 BLAS and for efficiency on modern computers, maximum use should be made of Level
3 BLAS. The purpose of the BLAS and their advantages are reviewed by Dongarra et al.8 We
show how the computation in MA42 is organized to exploit —GEMM, the Level 3 BLAS kernel
that implements dense matrix—matrix multiplication. We discuss, in Section 3, how we can modify
the frontal algorithm to obtain a factorization which requires a larger number of floating-point
operations but which is richer in Level 3 BLAS. The main theme of this paper is to see how this
trade-off works in practical applications.

We discuss the effect of a cache in Section 4 and indicate the effect of data reuse by looking at
the performance of —GEMM on a Silicon Graphics Power Challenge machine. In Section 5, we
illustrate the effects of exploiting Level 3 BLAS in the frontal solver through experiments on
Power Challenge machines using practical problems. Numerical experiments on an IBMRS/6000
and on a CRAY J932 are also reported on.

Finally, in Section 6, we present some concluding remarks.

2. FRONTAL SOLUTION SCHEMES

2.1. The use of BLAS in frontal schemes

A key feature of the frontal method for elemental problems is that the system matrix A is never
assembled explicitly but the assembly and Gaussian elimination processes are interleaved, with
each variable being eliminated as soon as its row and column are fully summed, that is, after the
last occurrence in an elemental matrix A(l). This allows all intermediate working to be performed
in a full matrix, termed the frontal matrix, whose rows and columns correspond to variables that
have not yet been eliminated but have appeared in at least one of the elements that have been
assembled.

Using Fortran notation, the innermost loop of a typical frontal method for an elemental
problem is of the form

do j"1, frnt
p1"pr( j)
if (p1 .ne. 0.0) then

do i " 1, frnt
fa(i, j)"fa(i, j)#pc(i) *p1

end do
end if

end do

where fa is the frontal matrix, pc is the pivot column, pr is the pivot row, and frnt is the order of
the frontal matrix. This code represents a rank-one update to the matrix that can be performed
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using the Level 2 BLAS routine —GER. After the assembly of an element, if there are k fully
summed variables which can be eliminated, then k calls to —GER can be made. However, as we
shall illustrate in Section 5, the computation is made more efficient if we avoid updating the
frontal matrix until all pivots for the current element have been chosen. If we delay the
elimination operations in this way, the Level 3 BLAS routine —GEMM can be used. We now
discuss in more detail how this is achieved in the Harwell Subroutine Library (HSL) code MA42.

After the assembly of an element, if the k fully summed variables are permuted to the leading
rows and columns, the frontal matrix can be expressed in the form

A
F
11

F
21

F
12

F
22
B (4)

where F
11

is a square matrix of order k. The rows and columns of F
11

, the rows of F
12

, and the
columns of F

21
are fully summed; the variables in F

22
are not yet fully summed. Pivots may be

chosen from anywhere in F
11

. The columns of F
11

are searched for a pivot and, when chosen, the
pivot row and column are permuted to the first row and column of (4). Row 1 of the permuted
matrix F

11
is scaled by the pivot and columns 2 to k of the permuted frontal matrix are updated

by k!1 calls to the Level 1 BLAS routine — AXPY. Columns 2 to k of the updated matrix
F
11

are then searched for the next pivot. When chosen, the pivot row and column are permuted to
row 2 and column 2 of (4), row 2 of F

11
is scaled by the pivot, and columns 3 to k of the frontal

matrix are updated. This process continues until no more pivots can be found. Assuming k pivots
have been chosen, F

12
is then updated using the Level 3 BLAS routine —TRSM

F
12
Q!F~1

11
F
12

(5)

and, finally, F
22

is updated using the Level 3 BLAS routine —GEMM

F
22
QF

22
#F

21
F
12

(6)

In practice, for a general matrix A, stability restrictions may only allow r pivots to be chosen
(r(k) and, in this case, the first r rows of F

12
are updated using —TRSM and then the remaining

k—r rows of F
12

, together with F
22

are updated using —GEMM. Further details of how this
strategy is implemented within the frontal code MA42 are given by Duff and Scott.4

Once all the eliminations have been performed, the upper triangular part of F
11

(which we
denote by F

U
) and F

12
are stored for the UQ factor and the lower triangular part of F

11
(denoted

by F
L
) and F

21
are stored for the PL factor. The triangular matrices F

U
and F

L
are held in packed

form. To exploit the block structure, MA42 uses direct addressing in the solution phase. At each
stage of the forward elimination, all the active components of the partial solution matrix Y (where
(PL) Y " B) are put into an array W"(W

1
, W

2
)T, with W

1
of dimension frnt-r by nrhs and

W
2
of dimension r by nrhs, where frnt is the current front size, r is the number of pivots chosen

and nrhs of the number of right-hand sides which are being solved (the second dimension of B).
The operations

W
2
Q!F~1

L
W

2
(7)

followed by

W
1
QW

1
#F

21
W

2
(8)
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are performed before W is unloaded into Y. Similarly, during the back substitution, all the active
components of the partial solution matrix Y are put into an array Z

1
of leading dimension r and

the active variables of the solution matrix X are put into an array Z
2
of leading dimension frnt-r.

The operations

Z
1
QZ

1
!F

12
Z

2
(9)

and then the computation

Z
1
QFª ~1

U
Z

1
(10)

are carried out before Z
1

is unloaded into X (Fª
U

is the triangular matrix F
U

with units on the
diagonal). Provided r'1, the forward elimination and back substitution are performed using the
Level 2 BLAS kernels —GEMV and —TPSV if there is only one right-hand side (nrhs"1), and
the Level 3 routine —GEMM and the Level 2 routine —TPSV if there are multiple right-hand sides
(there is no Level 3 BLAS kernel for solving a triangular system of equations with the matrix held
in packed form and multiple right-hand sides). We remark that the interior dimension in the call
to —GEMM (or —GEMV) is r during the forward elimination and frnt-r during the back
substitution. At most stages of the solution phase, frnt-r is larger than r and, in general, the
Mflop rate for the forward elimination is therefore lower than for the back substitution.

2.2. ¹he effect of reordering

The order of the frontal matrix increases when a variable appears for the first time and
decreases when it is eliminated. Consequently, the order in which the elements are assembled has
a crucial effect on the performance of the frontal solver. Ordering routines have been developed
for frontal solvers and use similar logic to bandwidth minimization. The HSL code MC43 offers
the user the choice of basing the ordering on the element structure or on the usual sparse matrix
pattern.9 These two approaches are termed direct and indirect element ordering, respectively.
The results presented by Duff et al.9 show that there is little difference in the quality of the
ordering from the two approaches but, as observed by Duff and Scott,6 the former is generally
faster if the problem has fewer elements than variables. In the numerical experiments reported on
in Section 5, the direct element ordering algorithm is used.

2.3. ¹he use of direct access files

Another principal feature of the frontal method is that by holding the PL and UQ factors in
direct access files, large problems can be solved using a relatively small amount of in-core
memory. A lower bound on the in-core memory required can be obtained by performing
a symbolic factorization, which is an option offered by the code MA42. The bound is only
a lower bound because numerical pivoting during the factorization may increase the memory
requirements. MA42 uses three direct access files, one each for the reals in PL and UQ and one
for the row and column indices of the variables in the factors. Corresponding to each of the direct
access files is a buffer (or workspace), which is held in-core. During the factorization, each time
a block of pivots is chosen and the frontal matrix (4) updated, a record is written to each of the
buffers. Once a buffer becomes full (or the final eliminations have been performed), it is written to
the appropriate direct access file. Use of direct access files is not needed if sufficient in-core storage
is available.
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In the integer buffer, each record holds lists of the (global) row and column indices of the
variables in the front. Each variable enters and leaves the front once only. By storing the row and
column indices of all the variables in the front in each record, more integer storage than necessary
is used by MA42. In practice, the repetition of the storage of variable indices in MA42 does not
require a prohibitively large amount of storage because, as explained earlier, blocks of pivots are
used and a record is only written once a block of pivots has been chosen. In our experience, for
elemental problems the required integer storage is in the range 15n—50n and the number of
integers stored is less than a quarter the number of reals stored (detailed results are given by Duff
and Scott,10 and in Section 5 below).

3. MODIFICATION FOR LEVEL 3 BLAS ENRICHMENT

We saw, in Section 2.1, that if the frontal solver picks a single pivot at a time then it is only
possible to use Level 2 BLAS but if r pivots are chosen after the assembly of an element into the
frontal matrix, the code MA42 uses the Level 3 BLAS routine —GEMM with interior dimension
r to update the frontal matrix prior to the next element assembly. If r is small, there may be little
advantage gained by using Level 3 BLAS. We can increase the Level 3 BLAS component by
delaying updating the frontal matrix until the number of pivot candidates is at least some
prescribed minimum, say r

.*/
. Suppose, at some stage, that the number of fully summed variables

is k, then the maximum number of pivots which we can choose is k. If k(r
.*/

and not all the
elements have been assembled, we do not look for pivots but assemble another element into the
frontal matrix until either the number of fully summed variables exceeds r

.*/
or there is

insufficient storage allocated for the frontal matrix to accommodate the next element. We then go
ahead and choose as many pivots as possible and update the frontal matrix, before assembling the
next element.

Delaying the search for pivots until the number of fully summed variables is at least
r
.*/

(r
.*/

'1) will have several effects on the factorization. Firstly, the total number of calls to the
Level 3 BLAS routine —GEMM will decrease but the average interior dimension will increase
since, on most of the calls, the interior dimension will be at least r

.*/
(numerical considerations

may prevent all the potential pivots from being chosen). Secondly, when looking for pivots there
will generally be a larger number of fully summed variables to test as potential candidates. Once
a pivot is chosen, each of the fully summed columns not yet selected as a pivot column is updated
using the Level 1 BLAS routine — AXPY. Therefore, the number of calls to — AXPY will increase.
This increase can be restricted by making greater use of Level 2 BLAS. We now briefly outline
how this can be achieved.

Let us assume the k fully summed variables have been permuted to the leading rows and
columns of the frontal matrix and the current front size is frnt. Assume the fully summed columns
are searched for a pivot in order. If each of the fully summed columns not yet selected as a pivot
column is updated as soon as a pivot has been chosen, the pseudo-Fortran code has the form

do i"1, k
search for a pivot for column i
do j"i#1, k

use column i to update column j,
entries i to frnt (—AXPY)

end do
end do

PERFORMANCE ISSUES FOR FRONTAL SCHEMES 131

( 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 42, 127—143 (1998)



An alternative approach is to delay updating column i until it is to be searched for a possible
pivot. In this case, the pseudo-Fortran code has the form

do i"1, k
if (i'1) then

update column i, entries i to frnt using the first
i!1 pivots (Level 2 BLAS)

end if
search for a pivot for column i

end do

There is a problem with this second approach if column i is updated and then found to be
unsuitable for use as a pivot column. In this case, column i#1 must be updated using the first i-1
pivots and then searched for a pivot. If column i#1 is chosen as the ith pivot column, column
i must again updated, but since it has already been updated for the first i!1 pivots, — AXPY is
used to perform a single update. We then have to search column i again for a pivot. Keeping track
of which fully summed columns have been updated by which pivot columns adds to the
complexity of this approach. The fully summed columns must also be permuted to be in a block
before the search for pivots begins, whereas MA42 limits the amount of swapping of rows and
columns by holding the positions of the fully summed variables and delaying permuting the pivot
rows and columns into a block until all the pivots following an assembly have been chosen.
Furthermore, since our numerical experiments show that the cost of the calls to the Level 1 BLAS
kernels is much less than the total cost of the Level 3 BLAS calls (see Table IV in Section 5), using
Level 2 BLAS in place of Level 1 BLAS does not have a dramatic effect on the total factorize time
and so we have not used the Level 2 BLAS implementation in our numerical experiments.

Performing additional assemblies before choosing pivots will lead to an increase in the average
and maximum front sizes. The number of operations used to perform the matrix factorization will
also rise, with many operations being performed on zeros. The real storage required to hold the
matrix factors will increase but, since fewer records will be written to the buffers, the repetition of
the storage of the row and column indices will be reduced and the integer storage will conse-
quently decrease.

There will also be effects on the solution phase. In the forward elimination, the interior
dimension of the calls to —GEMM will increase (or —GEMV if nrhs"1). The interior dimension
for the back substitution is frnt-r, where frnt is the order of the frontal matrix and r the number
of pivots chosen. Our new strategy will lead to an increase in frnt and in r although, in general,
the increase in frnt will be greater than the increase in r. Therefore, at most stages of the back
substitution, the interior dimension will also increase. During the forward elimination and back
substitution there will be a smaller number of calls to the Level 2 routine —TPSV, but the order of
the matrix in each call will increase. Fewer records will be written to the buffers and, as a result,
the time taken by the use of direct addressing during the solution phase will decrease. Since the
amount of data which must be copied from the partial solution matrix into the arrays used for
direct addressing is related to the number nrhs of right-hand sides, the time saved will increase
with nrhs.

We observe that Zitney and Stadtherr11 consider delaying pivots when using frontal algo-
rithms for chemical process flowsheeting. In their applications, entry is by equations and, in
general, a single variable becomes fully summed at each stage. Generalizing the earlier work of
Dave and Duff,12 Zitney and Stadtherr consider delaying pivoting until there are at least four
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pivots available. They do not use BLAS kernels but use a rank-4 update coded in assembly
language for the CRAY-2 computer.

4. THE REUSE OF CACHE

In this section, we discuss the performance of BLAS kernels on cache-based machines. We present
a very simple model for such machines with a multiply-add pipe and derive a formula that gives
an upper bound on the performance of the Level 3 BLAS routine DGEMM in terms of a number
of parameters that characterize the machine. This result is compared with the observed perfor-
mance of a Silicon Graphics Power Challenge XL with 75 MHz R8000 processors.

In our model, we count all floating-point operations (#,!,*, /) equally. We assume that the
machine has a clock speed of CMHz and that, if data is in the cache, f floating-point multiply-add
pairs can be performed in each clock period. We also suppose that the size of the cache line is
c words and that the latency of the cache is l clocks. We assume that the memory to cache
operations cannot be overlapped with the floating-point operations (the cache is a blocking
cache), although after the first word of the cache line is accessed computation can be overlapped
with the transfer of subsequent words into the cache line.

Now consider using the Level 3 BLAS routine —GEMM to perform the operation

CQaAB#bC (11)

where A and B are matrices of order m]r and r]m, respectively. We are interested in the case
where mAr and m is sufficiently large that C will not fit in the cache.

The number of operations required by (11) is rm2 floating-point multiply-add pairs plus
a further m2#mr floating-point multiplications. The total number of memory to cache opera-
tions is m2#2mr. In practice, this is likely to be an underestimate because it may be necessary to
load A and/or B from memory to cache several times during the operation. Thus, the estimate we
derive here for the speed of the operation will be greater than that actually observed.
The time (in clocks) taken for the memory to cache operations is

(m2#2mr)l/c

The time (in clocks) taken for the floating-point operations (flops) is

(rm2#m2#mr)/f

We then estimate the speed of —GEMM (in Mflops) to be

C ( (2r#1)m2#mr)/[(m2#2mr)l/c#( (r#1)m2#mr)/f ]

That is

fC ((2r#1)m2#mr)/[m2 (l f/c#r#1)#mr(2lf/c#1)]

Using our assumption mAr, this simplifies to

2 fC(r#1/2)/(lf/c#r#1)

For the Power Challenge workstation with 75MHz R8000 processors and using double-precision
arithmetic the parameters have the following values: C"75, f"2, c"16 and l+56. This leads
to an approximate speed of 300(r#1/2)/(r#8) Mflops for the DGEMM operation with interior
dimension r. In Figure 1 the estimated and observed speeds of DGEMM (in Mflops) are plotted
against the interior dimension r. For these results, m" 1000 was used.
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Figure 1. The estimated (continuous line) and observed speeds (stars) of DGEMM as a function of the interior dimension
(rank of update) on an SGI Power Challenge workstation

Using similar analysis, we can estimate the speed of a rank-one update (DGER) to be
300/8"37)5 Mflops. Note that this is less than the estimated speed of 50Mflops which is given by
our DGEMM formula with r" 1.

5. THE PERFORMANCE OF THE MODIFIED FRONTAL CODE

In this section, we illustrate the effects of using the Level 3 BLAS enriched version of the frontal
code MA42 when solving a range of problems arising from real engineering and industrial
applications. We first present results for two finite-element examples which arise from ground-
water flow calculations undertaken by AEA Technology. Although practical applications can
often call for significantly larger models, these problems are typical of the problems which AEA
Technology wants to solve using its code NAMMU.13 NAMMU uses a frontal solver and it is
important that the frontal solver is as efficient as possible. The first problem, GFLOW2D, is
a two-dimensional coupled groundwater flow salt transport calculation. The problem has 20 000
nine-noded quadrilateral elements with a total of 80 200 degrees of freedom. The second problem,
GFLOW3D, is a three-dimensional groundwater flow problem with pressure interpolated using
a mixture of 27-noded triquadratic brick elements and 18-noded prism elements. The problem
has 8820 elements with 73 943 degrees of freedom. These two problems were run on a Silicon
Graphics Power Challenge XL with four 75MHz R8000 processors and a cache size of 4Mbytes,
running IRIX 6)2. All runs were performed on a single processor using double precision
arithmetic and the vendor-supplied BLAS. The results are presented in Table I. In this table and
the following tables, all timings are CPU timings in seconds and r

.*/
denotes the minimum pivot

block size. r
.*/

"s denotes all pivot blocks are of size 1 (that is, a single pivot was chosen at
a time).
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Table I. Performance of different pivot block sizes for groundwater flow problems.
r
.*/

"s denotes all pivot blocks are of size 1

Maximum Largest Factor flops Factor
Identifier r

.*/
front size pivot block ( * 1010) time (s)

GFLOW2D s 308 1 1)46 208
1 309 7 1)46 129

10 318 14 1)50 111
15 323 20 1)52 108
20 328 26 1)56 109
30 338 37 1)60 112
40 348 44 1)67 115

GFLOW3D s 1636 1 16)7 6369
1 1636 26 16)7 1688

10 1641 26 16)8 1264
20 1651 43 16)9 1119
40 1675 59 17)1 1057
80 1702 105 17)7 1058

320 1936 345 21)5 4150

It is clear from the results presented in Table I for r
.*/

" s and r
.*/

"1 that there are
considered benefits to be gained from the standard MA42 strategy of delaying the elimination of
pivots until all possible pivots following an assembly have been chosen. The benefits are greater
for the three-dimensional problem than for the two-dimensional problem. The reason for this is
that each of the three-dimensional elements has significantly more degrees of freedom. This means
that the number of variables which become fully summed at each stage tends to be larger,
resulting in larger pivot blocks and better performance of the BLAS kernel —GEMM when
updating the frontal matrix.

The performance of the frontal solver is enhanced further by using the Level 3 BLAS
enrichment modification. However, provided r

.*/
*10 is chosen, a range of values of r

.*/
give

operation counts and factorize times which vary by less than 20 per cent. This suggests that, in
practice, it is not necessary to choose the value carefully and it is likely that good performance will
be achieved on the Power Challenge machine for a wide variety of problems with values for
r
.*/

of about 15 and 40 for two- and three-dimensional problems, respectively.
We now present, in more detail, results for test problems from other application areas. A brief

description of each of the problems is given in Table II. For these problems only the sparsity

Table II. The test problems

Degrees of Number of
Identifier freedom (n) elements Description/discipline

RAMAGE02 16 830 1400 3D Navier—Stokes
AEAC5081 5 081 800 Double glazing problem
TRDHEIM 22098 813 Mesh of the Trondheim fjord
CRPLAT2 18 010 3152 Corrugated plate field
OPT1 15 449 977 Part of oil production platform
TSYL201 20 685 960 Part of oil production platform
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Table III. Storage requirements for different pivot block sizes. r
.*/

"s denotes all pivot blocks are of size 1

Storage (Kwords)

Largest Maximum Factor flops
Identifier r

.*/
pivot block front size ( * 106) Real Integer

RAMAGE02 s 1 1453 55 910 41 808 41 892
1 32 1453 55 910 41 808 3496
8 30 1453 55 952 41 826 3128

16 45 1458 56 462 42 033 1702
32 54 1474 57 082 42 275 1074
40 54 1484 57 392 42 397 912

AEAC5081 s 1 154 202 1431 1456
1 12 154 202 1431 243
8 16 157 205 1441 129

16 26 166 223 1502 86
32 42 182 245 1573 58
40 50 190 264 1630 53

TRDHEIM s 1 277 961 7551 5232
1 36 277 961 7551 597
8 36 277 961 7551 597

16 42 289 985 7661 550
32 61 308 1073 8039 469
40 68 315 1128 8248 452

CRPLAT2 s 1 538 5065 13 012 13 089
1 19 539 5065 13 012 2133
8 24 545 5141 13 116 1101

16 27 550 5221 13 225 754
32 44 568 5466 13 553 399
40 49 574 5552 13 662 346

OPT1 s 40 984 10 764 16 466 16 215
1 40 984 10 764 16 466 1190
8 39 984 10 771 16 471 1163

16 45 996 10 875 16 573 863
32 59 1012 11 204 16 800 628
40 68 1016 11 268 16 939 565

TSYL201 s 62 543 10 741 20 919 20 925
1 62 543 10 741 20 919 1021
8 62 543 10 743 20 921 1017

16 62 551 10 759 20 944 985
32 61 572 11 202 21 369 541
40 73 579 11 257 21 424 534

pattern of the matrix was available and values for the matrix entries were generated using the
Harwell Subroutine Library pseudo-random number generator FA04. The experimental results
in Tables III and IV were obtained on a six-processor Silicon Graphics Power Challenge with the
MIPS R10000 chip running at 195 MHz. The runs were performed on a single processor and
again double-precision arithmetic and the vendor-supplied BLAS were used. In each case, the
elements were preordered using the direct element ordering algorithm implemented by the HSL
code MC43 before the frontal solver was used.
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Table IV. Performance for different pivot block sizes on a Power Challenge. r
.*/

"s denotes all pivot
blocks are of size 1. nrhs denotes the number of right-hand sides

Factor time (s) Solve time (s)

Identifier r
.*/

Total BLAS 3 BLAS 1 nrhs"1 nrhs"2 nrhs"10

RAMAGE02 s 2845)7 0)00 2724)80 14)50 17)98 47)69
1 547)8 433)56 5)14 9)76 10)98 18)22
8 527)4 411)26 5)42 9)89 10)26 17)77

16 447)1 326)42 11)21 9)47 10)01 16)05
32 422)5 292)18 19)18 9)60 10)38 15)51
40 442)4 300)11 25)66 9)84 10)52 15)32

AEAC5081 s 3)5 0)00 2)26 0)63 0)77 1)64
1 1)6 0)97 0)08 0)20 0)23 0)47
8 1)5 0)85 0)10 0)17 0)20 0)42

16 1)6 0)85 0)18 0)17 0)19 0)38
32 1)9 0)91 0)32 0)17 0)18 0)34
40 2)0 0)96 0)38 0)17 0)19 0)35

TRDHEIM s 17)3 0)00 10)75 2)49 3)05 6)33
1 7)8 3)82 0)49 1)41 1)49 2)42
8 7)7 3)84 0)47 1)39 1)40 2)40

16 7)7 3)81 0)61 1)14 1)24 2)17
32 8)3 3)73 1)21 1)21 1)30 2)12
40 8)9 3)76 1)60 1)24 1)33 2)21

CRPLAT2 s 235)6 0)00 212)00 5)02 5)86 15)71
1 57)0 46)52 0)54 2)94 2)83 5)44
8 43)4 31)64 0)96 2)69 2)85 4)48

16 40)3 28)20 1)47 2)32 2)71 4)25
32 38)6 24)97 3)12 2)07 2)21 3)58
40 38)2 24)26 3)76 2)07 2)22 3)49

OPT1 s 538)4 0)00 493)86 5)98 7)27 19)28
1 92)7 71)24 2)38 2)78 3)10 5)48
8 92)0 70)53 2)43 2)99 2)96 5)32

16 83)8 61)43 3)67 2)78 3)35 5)48
32 81)6 54)70 5)55 2)87 3)31 4)92
40 82)5 53)03 7)49 2)75 3)32 5)00

TSYL201 s 606)1 0)00 555)63 8)83 10)08 26)61
1 82)7 58)30 3)08 4)21 4)20 6)74
8 83)4 58)63 3)02 3)77 3)96 6)56

16 83)3 57)86 3)17 3)63 4)06 6)76
32 75)7 50)01 6)41 3)20 3)46 5)65
40 75)9 49)77 6)42 3)18 3)76 5)51

In Table III, the size of the largest pivot block used, the maximum front size, the total number
of floating-point operations for factorizing the matrix, and the real and integer storage are shown
for r

.*/
" s and for values of r

.*/
in the range 1—40. The real storage is for holding both the PL

and the UQ factors (although, in practice, PL needs to be stored by MA42 only if the user wishes
either to solve for subsequent right-hand sides or to solve transpose systems ATX"B). It is
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Table V. Performance for different pivot block sizes on an IBM RS/6000. r
.*/

"s
denotes all pivot blocks are of size 1. nrhs denotes the number of right-hand sides

Solve time (s)
Factor time

Identifier r
.*/

(s) nrhs"1 nrhs"2 nrhs"10

AEAC5081 s 9)9 0)51 0)62 2)64
1 3)3 0)14 0)21 0)71
8 2)8 0)09 0)15 0)45

16 3)1 0)05 0)13 0)44
32 3)5 0)15 0)18 0)45
40 4)0 0)14 0)12 0)42

CRPLAT2 s 216)0 3)73 5)83 33)80
1 69)4 1)27 1)84 8)09
8 60)2 1)17 1)70 6)31

16 58)6 1)15 1)46 5)39
32 62)5 1)01 1)46 4)44
40 63)7 0)89 1)45 4)25

OPT1 s 455)6 4)19 7)34 40)63
1 115)5 1)39 2)00 7)18
8 115)3 1)47 2)08 6)99

16 107)1 1)16 1)89 5)98
32 110)1 1)25 1)76 5)46
40 112)3 1)21 1)75 5)19

apparent that modest increases in r
.*/

have little effect on the size of the largest pivot block and
on the maximum front size, and that the real storage requirement and the operation count grow
slowly with r

.*/
. However, since large values of r

.*/
reduce the repetition of the storage of the row

and column indices, increasing r
.*/

can give substantial savings in the amount of integer storage
used. Conversely, if only single pivots are chosen (r

.*/
"s), there is much repetition in the integer

storage.
Table IV presents the CPU times for the calls to the Level 1 and Level 3 BLAS kernels, and the

total time for the matrix factorization, together with the time taken to solve for 1, 2 and 10
right-hand sides. The total factorization time and the solve times include all the overheads for the
out-of-core working. We again observe that if Level 3 BLAS is not used (r

.*/
"s), the factoriz-

ation is much slower than if the frontal matrix is updated at each stage using as many pivots as are
available (that is, as in the standard version of MA42, r

.*/
"1). In the latter case, the calls to the

Level 1 BLAS kernels account for a small part of the total factorization cost. As r
.*/

is increased,
the Level 1 BLAS account for a larger proportion of the factorization time until a point is reached
where the savings in the Level 3 BLAS time is more than offset by the increase in the Level
1 BLAS time. The value of r

.*/
at which this occurs is problem-dependent, but our results suggest

that, in general, on the Power Challenge it is advantageous to use a value of about 16. However, if
we want to solve for a large number of right-hand sides, it can be beneficial to use an even larger
value of r

.*/
.

The results in Table IV were all obtained on an SGI Power Challenge machine. We have also
performed some experiments on a subset of our test problems on an IBM RS/6000 3BT and on
a single processor of a CRAY J932. The results are given in Tables V and VI, respectively. In each
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Table VI. Performance for different pivot block sizes on the CRAY J932. r
.*/

"s
denotes all pivot blocks are of size 1. nrhs denotes the number of right-hand sides

Solve time (s)
Factor time

Identifier r
.*/

(s) nrhs"1 nrhs"2 nrhs"10

AEAC5081 s 5)3 0)79 1)12 3)43
1 4)4 0)21 0)28 0)86
8 3)9 0)15 0)19 0)57

16 3)9 0)15 0)19 0)56
32 3)9 0)15 0)19 0)57
40 4)0 0)15 0)19 0)56

CRPLAT2 s 59)9 4)99 6)80 23)69
1 54)8 1)23 1)57 5)14
8 47)6 0)87 1)10 3)51

16 45)0 0)74 0)93 2)89
32 44)1 0)62 0)77 2)38
40 44)7 0)63 0)79 2)34

OPT1 s 109)6 5)40 7)46 25)98
1 94)1 1)18 1)38 4)40
8 93)2 1)17 1)39 4)34

16 84)7 0)84 1)08 3)46
32 80)2 0)78 1)02 2)97
40 81)2 0)79 0)98 2)92

case, the vendor-supplied BLAS are used. We see that, on the RS/6000, there are considerable
savings to be made by not forcing all pivot blocks to be of size 1, and further modest savings in the
factorization and solve times can result from choosing r

.*/
to be greater than 1. The Level

1 BLAS perform well on the CRAY and this is reflected in our results since, on this machine, the
difference between the times for factorizing the matrix with r

.*/
"s and r

.*/
*1 are less

significant. However, because of the significant savings in both the time taken to read the integer
data from the direct access file and the time used by the direct addressing in the solution phase,
the solve times are substantially reduced by allowing r

.*/
*1.

5.1. Results for equation entry

Although the frontal code MA42 is primarily designed for problems in the elemental form (3),
the code also allows input by equations. In this case, the matrix A is assembled a row at a time. In

Table VII. The assembled test problems

Number of
Identifier Order entries Description/discipline

ORSREG1 2 205 14 133 Oil reservoir simulation
SHERMAN3 5 005 20 033 Oil reservoir simulation
WANG3 26 064 177 168 3-D semiconductor device simulation
ONETONE2 36 057 227 628 Harmonic balance method
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Table VIII. Storage requirements for different pivot block sizes (assembled problems).
r
.*/

"s denotes all pivot blocks are of size 1

Storage (Kwords)
Largest Factor flops

Identifier r
.*/

pivot block ( * 106) Real Integer

ORSREG1 s 1 531 1409 1420
1 4 531 1410 1215
4 7 536 1417 358
8 9 543 1427 182

16 18 555 1445 93
32 33 585 1487 49
40 43 596 1503 40

SHERMAN3 s 1 179 934 959
1 4 179 938 843
4 7 203 1035 277
8 10 214 1066 151

16 18 230 1106 105
32 33 262 1182 55
40 42 271 1206 49

WANG3 s 1 39 301 44 583 44 714
1 4 39 301 44 583 43 898
4 7 39 434 44 661 11 217
8 10 39 613 44 765 5635

16 18 39 972 44 973 2843
32 33 40 697 45 390 1148
40 42 41 063 45 598 1169

ONETONE2 s 1 205 3622 3802
1 16 301 4360 1312
4 18 389 5268 885
8 21 488 5905 702

16 24 683 7096 469
32 47 1088 9250 328
40 49 1288 9906 289

this section, we present results for different pivot block sizes for the assembled matrices listed in
Table VII. The first two problems are taken from the Harwell—Boeing Collection, and the
remaining problems, WANG3 and ONETONE2, were supplied to us by Tim Davis, University
of Florida. The original ordering is used.

In Table VIII flop counts and storage requirements for different pivot block sizes are presented,
and in Tables IX and X factorization and solve times on an IBM RS/6000 and a single processor
of a CRAY J932 are given. For the first three assembled problems, we see that the difference
between the factorization and solve times for r

.*/
"s and r

.*/
"1 are small. This is because, for

these problems, after each assembly there is usually only one pivot available.11 We can see this by
comparing the real and integer factor storage for r

.*/
"s with r

.*/
"1. Nearly equal values

imply the majority of the pivot blocks when r
.*/

"1 are of size 1. However, we can obtain
significant improvements in the factorize and solve times, as well as in the integer factor storage,
by waiting for more pivots to become available.
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Table IX. Performance for different pivot block sizes on an IBM RS/6000 (assembled
problems). r

.*/
"s denotes all pivot blocks are of size 1. nrhs denotes the number of

right-hand sides

Solve time (s)
Factor time

Identifier r
.*/

(s) nrhs"1 nrhs"2 nrhs"10

ORSREG1 s 26)0 0)27 0)50 2)93
1 23)7 0)39 0)42 2)57
4 10)1 0)12 0)19 0)96
8 8)4 0)12 0)18 0)67

16 8)1 0)09 0)16 0)45
32 8)2 0)08 0)12 0)45
40 8)4 0)07 0)08 0)34

SHERMAN3 s 11)4 0)21 0)41 1)74
1 10)2 0)19 0)41 1)59
4 5)4 0)09 0)18 0)77
8 4)7 0)11 0)13 0)63

16 4)6 0)10 0)13 0)50
32 4)8 0)12 0)15 0)49
40 5)1 0)16 0)14 0)51

WANG3 s 1703)8 9)5 17)8 123)6
1 1684)0 9)7 17)7 121)7
4 618)2 4)3 8)7 38)1
8 496)5 3)5 6)3 23)6

16 435)7 3)4 5)1 15)8
32 423)6 2)9 4)3 12)1
40 427)1 2)9 4)4 11)6

ONETONE2 s 53)5 1)52 2)38 14)24
1 43)7 0)79 1)25 6)16
4 41)0 0)70 0)84 4)52
8 40)8 0)55 0)67 3)98

16 41)9 0)52 0)72 3)48
32 45)0 0)70 1)10 3)48
40 46)3 0)61 0)75 3)53

6. CONCLUDING REMARKS

We have shown how the frontal method can be implemented to enhance the use of Level 3 BLAS.
We have introduced a parameter r

.*/
to control the minimum number of pivots that are

eliminated at once. Using a range of practical problems, we have illustrated that, on cache-based
machines, using r

.*/
*1 leads to good performance in terms of Mflops. The implementation of

the frontal method which uses only pivot blocks of size 1 (r
.*/

"s) does reasonably well on vector
machines but performs poorly on cache-based machines. For problems in elemental form, we
found that the most significant improvement in performance comes form using r

.*/
"1 in place

of r
.*/

"s, but for some assembled problems, in which there is normally only one pivot available
at a time, better results are obtained if r

.*/
'1. The plot given in Figure 1 of the speed of

DGEMM on a Power Challenge machine against the interior dimension indicates that the
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Table X. Performance for different pivot block sizes on the CRAY J932 (assembled
problems). r

.*/
"s denotes all pivot blocks are of size 1. nrhs denotes the number of

right-hand sides

Solve time (s)
Factor time

Identifier r
.*/

(s) nrhs"1 nrhs"2 nrhs"10

ORSREG1 s 8)9 0)52 0)70 2)36
1 9)3 0)45 0)60 2)04
4 7)2 0)17 0)21 0)71
8 5)6 0)11 0)14 0)45

16 5)0 0)08 0)10 0)31
32 4)7 0)07 0)08 0)25
40 4)7 0)06 0)08 0)25

SHERMAN3 s 6)4 0)57 0)77 2)34
1 6)3 0)52 0)70 2)13
4 4)4 0)27 0)35 1)02
8 3)5 0)21 0)27 0)78

16 3)3 0)19 0)24 0)70
32 3)5 0)17 0)22 0)63
40 3)5 0)17 0)21 0)61

WANG3 s 392)1 13)2 17)6 64)8
1 405)1 12)9 17)2 63)6
4 428)2 4)5 5)7 20)2
8 329)0 3)0 3)8 12)7

16 279)9 2)3 2)8 9)0
32 259)8 1)8 2)3 7)2
40 258)7 1)8 2)3 6)9

ONETONE2 s 58)5 3)76 5)32 14)68
1 36)8 1)79 2)51 6)79
4 23)4 1)07 1)38 3)93
8 19)9 0)80 1)07 3)14

16 19)2 0)67 0)91 2)64
32 20)7 0)60 0)79 2)27
40 21)8 0)60 0)80 2)63

precise choice of r
.*/

is not crucial. This is important from a practical point of view since it is
possible to get good performance without having to optimize the pivot block parameter from run
to run.

A disadvantage of frontal schemes is that they usually perform many more operations than are
necessary for the numerical factorization and the factors normally have many more entries than
those obtained by other techniques. This is illustrated in the recent papers by Duff and Scott6 and
Zitney et al.14 However, in practice we have frequently found that the convenience of being able
to specify memory requirements in advance and being able to hold the factors out-of-core
adequately compensates for this. As a result, we have made extensive use of MA42 and its
predecessor, MA32, for more than 15 years. For problems in three dimensions, hybrid techniques
are needed, but for two-dimensional problems, ease of use and performance mean the frontal
method remains our method of choice for unassembled problems from finite-element discretiz-
ations.
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Clearly, it is important that we implement our algorithms to make effective use of machines
which have a hierarchical memory structure. The techniques which we have discussed in this
paper for making better reuse of data in the cache are applicable to other direct solvers.

7. AVAILABILITY OF SOFTWARE

MA42 and the element ordering routine MC43 are included in Release 12 of the Harwell
Subroutine Library. A complex frontal solver, ME42, as well as a frontal solver for symmetric
positive-definite systems, MA62, are also available. These codes are all written in standard
Fortran 77; a Fortran 90 version of MA42 is also included in Release 12 of the HSL. Anyone
wishing to use the codes should contact the HSL Manager: Dr S. J. Roberts, Harwell Subroutine
Library, AEA Technology, Building 552, Harwell, Oxfordshire, OX11 0RA, England, tel.: #44
(0) 1235 434714; fax: #44 (0) 1235 434988 or e-mail: Scott.Roberts@aeat.co.uk, who will provide
details of price and conditions of use.
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