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1. Introduction

The following diffusion equation models a simple reversible reaction within a small cell:

$(x, t) = 2(X> t), O<x<l, t>o, (1 la)

$(O, t)=O, t>o, (1 .lb)

%(l, t) =m$(t) = &-{M(t)-(I-B(r))u(l, t)) t>o, (l.lc)

u(x,O)=l, O<x<l, (1 .ld)
0(o) = 0, (l.le)

where

mtY(r)+jo’~(x,  t) dx=l, t>O, (l.lf)

and E, L, m are given constants.
The problem involves a reaction between two reactants X and Y in a cell to produce a

complex XY. The species Y is immobilized on a side wall and X is dissolved in solution. The
reaction takes place only on the side wall.
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At time t = 0 a solution of X is introduced to the cell, then as the reaction at the wall
proceeds, an X concentration gradient develops, and X diffuses to the wall until equilibrium
results. The interest is in predicting the X concentration profile and the concentration of the
complex XY as functions of time. In the above model the non-dimensionalized variables U(X, t)
and O(t) represent the X and XY concentrations, respectively; the constants E, L, m involve
the cell width, the initial concentration of Y, the initial concentration of X at the reaction side
wall, and the diffusion coefficient of X.

Further discussion of this problem may be found in [6].
By taking the Laplace transform of equation (l.la), using the initial condition (l.ld), and

inverting using the Convolution Theorem, it may be shown that ~(1, t) is given by

~(1,  t)=l-m
/0

‘k(t--s)$(s)ds, 0 4
where the kernel k( t ) is given by

k(t) = (lTt)p2
i

. (1.3)

For details see [6].
Consequently it follows from (1.1~)  that d0/dt satisfies the nonlinear weakly singular Volterra

integro-differential equation

g(t)= -& [Lo(t) - (1 - s(t))(l  - mJbk(t  - s)g(s)  d,s 11, (14
with 0(O) = 0.

The aim of this paper is to solve equation (1.4) numerically and then to use the numerical
values for O(t) in equation (1.2) to find ~(1, t); once u is known on the boundary x = 1 equation
(l.la) may be solved with (l.lb) and (l.ld) to determine u in the interior 0 <x < 1, t > 0. A n
order one method will be proposed, a convergence result will be presented and numerical results
will be given.

2. Asymptotic behaviour near t = 0

Consider the nonlinear Volterra integro-differential equation

8’(t) = C- Ee(t) - Cm(l - B(t))L’k(t  -x)0’(s)  ds, t > 0,

0(O) = 0,

where C = E/(1 + L),

k(t) = (lTt)p2 l1+2E exp -$ ,

n=l i 11

and O’(t)  denotes d&t)/dt.
For small t, exp( -n2/t) -=x 1 for all n and k(t)  = (Tt)-lj2.  Therefore, as t LO,

(2-l)

O’(t)  = C - Cmrr-1’2
/

’ “b) ds
0 (t - sy .

P-2)
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This is a linear second kind Volterra integral equation for e’(t).  The solution of (2.2) may be
found explicitly and is given by

B’(t) = CE,,,( - Cmt1’2), (2.3)

where EP( z) is the Mittag-Leffler function defined for all p > 0 by

(See, for example, [7].)
Consequently, since f3(0) = 0, as t JO

e(t) = Ct - $C2m71-1’2t3’2 + O(t’). (2.4)

It follows that 0(t) possesses a discontinuous second derivative at the left end point of the range
of integration and B(t) is smooth on [S, T] for any 6 > 0.

It is well-known that a discontinuity in one of the derivatives of the solution of a weakly
singular Volterra integral equation can result in the loss of high order accuracy in product
integration and collocation schemes. This has been observed, for example, by te Riele [9],
Brunner and te Riele [2] and Brunner [l]; see also Dixon [3]. As a result, in this paper an order
one method will be considered for solving (2.1).

3. The numerical method

The equations to be solved are

e’(t) = C- Ee(t) - Cm(1 - e(r))@r - s)B’(s)  ds, 0 G t G T,

e(o) = 0, C=E/(l +L),

and

~(1, t)=I-m
I

fk(t-s)B’(s)ds, O<t<T,
0

with the kernel k( t ) defined by

(3.1)

P-2)

k(t) = (7rt)-1’2 . (3.3)

It is first necessary to truncate the infinite series in (3.3). Let k,(t) denote the kernel truncated
after I terms, that is,

i

I

k,(t) = (at)-1’2 1+2x exp -$ .

n=l ( 11
(3.4)

Given T, c > 0 1 is to be chosen so that

[k(t)-k,(t)1  ~6, forall tE[O, T ] . (3.5)
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Now

I/k(t) -k,(t) 1 = 2(at)p2 n$+l exp(- ;) < 2(nf)-“‘im  cxp( - ;) dn

= ( $1’2~;~,1,z1  exp( - ;) dx = 1 - +((2/t)1’21),

where

444 = ~~~zexp(-~)dx=(~)1’2~exp(-~)dx

is a normal function; tables of G(z) may be found, for example, in [lo].
It follows that (3.5) is satisfied if 1 is chosen such that

+((2/T)1’21)  > 1 - <. (3 4

The numerical method which will now be proposed for equation (3.1) will be a product
Euler-type method.

Let tj = iht, i = O(l)N, NAt = T; 8, and ui will denote approximations to 8( ti) and ~(1, t;),
respectively.

Replacing k(t) by k,(t) in (3.1)
i-l

O'(ti)  = C- EO(ti)  - Cm(1 - e(t,)) c fJ+‘kl(ti  -.+9’(s)  ds.
;=o ‘,

For t E [t,, tj+l]  approximate 8(t) by the linear Lagrange polynomial

Then using the approximation

C”exp( -&) ,ti_1sy2  dj=e*p(  -4~;+y$,2~

(3.7)

(3 4

leads to the scheme

e,=o,

Bi - 8i_1
At

=C-Ee,-Cmn- 112(1 - B,)At'z y(i -j)( B,,kt  ‘), i = l(l)N, ( 3 . 9 )
j=O

where the quadrature weights y( i -j)  are given by

j = O(l)i - 1, i = l(l)N. (3.10)

As it stands, this scheme requires the solution of a nonlinear equation at each time step since
the right hand side of (3.9) involves a term 0:. This may be avoided by replacing (1 - ei) by
(1 - B,_ 1), which is an order one approximation.



J.A. Dixon / Singular integro-differential equations 293

On rearranging the scheme for evaluating Bi, i = l(l)N, becomes

8,,=0,  Bi= $ CAt+e,_r  +  Cm7
I i

i - l

-l”“(l  - 0,_,)At  C (y(i -j) - y(i -j+ l))t5,  ,
j=1 I

i = l(l)N, (3.11)

where

I,L~  = 1 + EAt + CrnT-“*Aty(l)(l  - 8,-r),

with y(i -j) given by (3.10).
The corresponding discretization of (3.2) is

zQ=l,
i - l

u, = 1 - ma-‘/* C y(i -j)(S,+,  - dj), i = l(l)N.
j = O

Note that in evaluating Bi the summation
i - 2

ai=Y(l)ei-l-  C YCi-j)(ej+l-ej)
; = o

has already been found and ui is then determined by

ul=l-mm71 -l’*(y(l)fI;  - a,).

(3.12)

4. The convergence result

The main result of this paper is the following convergence result for the numerical scheme
(3.11),  (3.12).

Theorem 4.1. Let e(t) and ~(1, t) be the solutions of equations (3.1) and (3.2) respectively. Let
T > 0 and S > 0 (with 6 < T) be given. Given Atmin >‘O take r to be the smallest integer such that
rAt& > 6, and choose 1= l(T) so that

Ik(t)-k,(t)1 <eat,, foraZZtE[O,  T ] , (4.1)

where k(t), k,(t) are given respectively by (3.3),  (3.4).
Let 8,, ui, i = O(l)N, be the solutions of the discretizations (3.11) (3.12). Then for all At 2 At,,

sufficiently small the error e, = e( t,) - Bi satisfies

Iei-e,_rI  G
C;At3'2 + O(At'), i = l(l)r - 1,

CiAt’+ O(At”“), i = r(l)N,
(4.2)

and

Iu(1, ti) - ui I < C,lAt + 0(At3’*), i = O(l)N. (4.3)
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In the above theorem, and throughout this paper, constants C, M, with or without subscripts
and/or superscripts, will denote constants which are (possibly) dependent on T but independent
of At.

Note that (4.2) implies

1 ei 1 < C,‘At + 0(At3’*), i = r(l)N. (4.4)

For if

I e, - eipl I G bj,

t h e n  1 IeiI-_le,_,I  I <b,.Thatis, -bi < I e, I - I e,_l I < bi, which implies I ei I G C>=,b,. There-
fore

IeiI G
i

r( C;At3’*  + O(At’)), i= l(l)r- 1

r(C;At3’*+O(At2))+(i-r)(C;At2+O(At5’*)),  i=r(l)N,

and, since iAt G T, (4.4) follows.
The proof of Theorem 4.1 will be given in the next section. The presence of the term (1 - 0(t))

multiplying the integral on the right hand side of equation (3.1) means that the usual conver-
gence analysis presented, for example, by McKee [8], is not applicable. However, the conver-
gence analysis will follow the usual steps employed when looking at the convergence of a
numerical scheme for solving a Volterra equation. The order of the consistency error will be
considered in the remainder of this section and then in the next section, the consistency error will
be related to 1 e, - e,_l [ using a discrete Gronwall inequality (Lemma 5.1). The main new
feature in the argument is the necessity in this paper to consider ( e, - e,_l 1, in place of ) e, I.

The consistency error T,, i = l( 1) N, of the scheme (3.11) is defined to be

T. = %) - e(ti-l> _  c + Eqt,>

I At I

The following lemma investigates the order of consistency.

Lemma 4.1. Let r and I be chosen as
T defined by (4.5) satisfies

in Theorem 4.1. Then .for all At 2 At ti the consistency error

IT I6
C,At”* + O(At), i = l(l)r - 1,

C,At + 0( At*), i = r(l)N.

Proof. Using (3.1) the consistency error r may be written as

T = s(ti> - ‘Cti-l>
i - l

I At
- O’(ti)  - Cm(l - O(t,)) C J”+‘k(ti-

j = O  ‘1

i - l

+ CmTr-1’2(1  - 0( ti_l))  C y(i -j)
e(tj+l> - ‘Ctj)

j=O A t

(4.6)

s)O’(s) ds
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Therefore,

T, =
I

e(ti) - W-1) _  s,(t.)

At I

1-I

-cm(l - B(t,_,)) C jfi+‘kr(ti-  tj)
j=o f,

‘@‘+‘k/ ‘h) i) ds

i - l

+CWZ(I-O(t,_,))  C /~f“(k,(ti-tj)-k,(ti-s))“(s)  ds
j = O  ‘1

i - l

+Cm(l-B(t,~,))  C lr’“(k,(ti-s)-k(ti-s)}B’(s)  ds
j = O  I,

+Cn+(tJ - B(ti_,))@t,  -s)O’(s)  ds.

Since e(t)  is smooth on [S, T], for s E [t,, tj+l], j = r(l)N - 1,

(4.7)

I (3’(s) - e(t~+*)  - e(tj)
At )I d  M At

1 . (4.8)

Using the asymptotic expansion (2.4) for small t it follows that for s E [t,, tj+l],  j = O(l)r - 1,

‘@j+‘) - ‘(“)
At

< M2Atl/2 + O(At)

Consequently, for i 2 r,

r-l

< (M,At”‘+  O(At))At  c k,(t,  - tj).

j = O

But, for i >, r,
r - l

At c kt(t; - t,) = At c
j=O

;::T-?/2(1+ +xpi- &]] (ti _:,,1/2

r-1

<C*Atx ’
j=o (t, - t,y2

< c*
J

f, ds
<c*J

t, ds

0 (ti-s)1’2 0 (1, - s )I’*
= 2C*(rAt)“*.

Hence, for i > r,

(4.9)

(4.10a)
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For i~r- 1,
i-l i-l

At c k,(t, - t,) < C*At c
j=O .j=o  (tl -:y2

<c*1t, ds

0 (t;-s)1’2
= 2C*tfj2  < 2C*(rAt)“2,

and

(4.10b)

Since 0’(t)  is continuous on [0, T]

1 8(tj)  - t9(t,_J  ) < M3At, i = l(l)N. (4.11)

Also, for s E [ti, tj+l],

so that

j/k&-tj)  -k,(t,-s)l  <Iv&At. (4.12)

Using (4.8)-(4.12)  and (4.1) in (4.7) the required result may be deduced. Cl

The consistency error f, i = l(l)N, of the scheme (3.12) for determining { u;}Er  is given by
i-l

t = u(1, ti) - 1 + mlc1’2 c Y(i -~)(~(t,+,)  - e(t,)).
j=O

Lemma 4.2. Under the same hypotheses as Lemma 4.1 the consistency error c satisfies

) f. 1 < 6At + O(At’), i = l(l)N. (4.13)

Proof. The consistency error $ may be rewritten as

i-l

+m c /“+‘(k,(ti-  t,) -k,(t;-s))O’(s)  ds
j=O '1

i-l

+mx /“*l(k,(ti-s)-k(t,-s))B’(s)ds.
j=O '1

Using (4.1),  (4.Q (4.10) and (4.12) the bound (4.13) follows. •I
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5. The proof of convergence
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In this section the proof of Theorem 4.1 will be presented. First some preliminary results are
required.

The consistency error T. defined by (4.5) will be related to the error 1 e, - ei_l 1 using the
following discrete Gronwall inequality.

Lemma 5.1. Let xi, i = O(l)N, be a sequence of non-negative real numbers. If
i-l

xi < & + MAtI-*  c xi
j=. (i +a ’ z = O(W

where CY E (0, l), M > 0 is independent of At, and

i

6
O<+i<

1, i=O(l)r-  1,

62, i = r(l)N,

for some integer r, independent of At, then

(5.1)

(5.2)

S, 1 + At’-*MT(l  - a)r  c
(

M (MI’(1 - a)(iAt)lha)”
n=O q(n +  l)(l _  a))

1
’ ‘= mr-  1, (5b3a)

S,(l + I?_,( MT(1 - Ly)(iAt)lPo))

O” (Mr(l - a)(rAt)rPa)”
+&At’-*MI’(l  - a)r  c

n=O r((n+l)(l  -a>) ’
i = r(l)N. (5.3b)

Corollary 5.1. If xi, i = O(l)N,  satisfies (5.1), (5.2) and NAt < T, then there exists positive
constants C, = C,(T), C, = C,(T), independent of At, such that

A,(1 + C,At’-“), i = O(l)r  - 1, (5.4a)

S,C, + 6,ClAt1-“, i = r(l)N. (5.4b)

Proof. From the results of Dixon and McKee [4] (see also [5]) it follows that (5.1) implies xi,
i = 0( 1) N, satisfies

xi<&+ 5 At’&;‘+,, (5.5)
II=1 j=O

where
i - l

k!j’ = k,, = M (  At(i  -j))-*  a n d k!J” = At c kJc~;“-“, n > 2. (5.6)
l=j+l

Moreover, Dixon and McKee show that with kij defined by (5.6),  kiy) satisfies

(At( i _j))(n-l)-na
7 n >, 1, (5.7)
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and that

5 Ari~k~;‘<E,,(MT(l  -(~)(iAt)‘-“), i = O(l)N.
n=O i=o

Using (5.7) in (5.5),  for i = O(l)r - 1,

(5.8)

which yields (5.3a).
For i = r(l)N

x, < 6, + 6, E A$ kl’;’  + 6, E At’?  k;;‘.
n=l j = O n=l /=’

Using (5.8) to bound the last term on the right and employing the same arguments as above to
bound the second term on the right, (5.3b)  follows immediately. 0

To deduce the corollary, note that iAt < T, i = O(l)N, and use the fact that the series

f (MT(1 - c~)Tl-~)”

n=O r((n + l)(l - 4)

is convergent for all T and is thus bounded for all T.
A bound on the quadrature weights will be required in the convergence analysis. A bound is

given by the following lemma.

Lemma 5.2. The quadrature weights y( i -j) defined by (3.10) satisfy

(5 3

Moreover,

y(i-j)>y(i-j+l),  j=O(l)i-1. (5.10)

Proof. For j < i - 1,

~ C?(T)  I,+I ds
dp

At J1, (ti - s)1’2
= c^(T)(At(i  - .j))-l’*/l

0 (1 - p/(i -j))“’

< M(At(i  -j))-“‘.
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Hence, for j < i,

y(i-j+l)  <M(At(i-j+1))-“2.

For j < i - 1, (i -j + 1)-lj2  < (i -j)-‘/2, and (5.9) is immediate. For all i,

i’/2 _ (i _ 1)1’2  > (i + 1)1’2  - i1j2,

and for all positive integers n and At sufficiently small

( j1/2 _ (i _ 1)‘12)  exp -IL_( iL;:)>((i+l)1’2-i1/2)expi(iIIfAti,
i = l(l)N- 1, Nh = T.

It may be deduced that

y(i)>y(i+l), i=l(l)N-1,

and (5.10) follows. •I

The following bound on 0, will be employed in the proof of Theorem 4.1.

Lemma 5.3. The sequence { 13~}~=~ defined by (3.11) satisfies

0<8,<1, i=l,2,3 ,..... (5 .ll)

Proof. The proof uses an inductive argument.
Since 0, = 0 it is clear from (3.11) that (5.11) is satisfied for i = 1.
Assume inductively that (5.11) is satisfied for i = 1, 2,. . . , k - 1. It then follows using (5.10)

that 0, > 0 and, from (3.11),  ek < 1 provided

k - l

ok_,  + CAt + Cm7-“2(l  - e&i )At c (y(k-j)-~(k-j+l))ej
j=l

<l+EAt+CmK 1’2Aty(l)(l - e,_,). (5.12)

By hypothesis ok-i < 1 and, since L > 0, C < E. Moreover, since by assumption 0 < Sj < 1,
j = l(l)k  - 1,

k - l k - l

C (Y(k -j> - u(k -j + l>)ej < ,zl (Y(k -j> - Y(k -j + 1)) = Y(l).
j=l

Thus (5.12) holds and the inductive step is complete. 0

Using Lemmas 5.1-5.3 the proof of Theorem 4.1 is now given.



300 J.A. Dixon / Singular integro-differential equations

Proof of Theorem 4.1. From (3.11) and (4.5) the error e, = @t,) - oi satisfies
i - l

e, - e,-1 = -Ee,At - Cm7 -l’*At c y(i -j)(e,+, - e,)
j = O

i - l

+ CrnT-“*At ,FoY(i -i)(e(t~-l)~e(tj+l)  - e(tj))  - ei-l(ej+l  - 8j))

+ AtT.
i-7

= - Ee,At - Crnq -‘12At(l  - 0,_,)  c y(i -j)(e,+, - e,)
;=o

i - l

+Cmn -‘/2Atei_l c y(i -j,(e(t,,,) - e(t,)) + AC

j = O

Set zi = e, - e,_,, i = l(l)N, z. = 0, and observe that

ej= C zj.
j=o

Then zI, i = O(l)N,  satisfies
i i-l

z,=-EAtzz,--Crn~ -“2At(l - 8i_1) c y(i -j)z,+,
J=o j = O

i - l i - l

+ Cmr-“2At  c zk c y(i -j)AtO’(q,)  + AtT,
k = O j=o

for some qj E ( tj, tj+l).
From Lemma 5.3

O<B,<l, j=O,l,.....

Also

<c*J 1, ds

0 (ti-sy2
= 2pp.

Therefore,

lzil <EAt  i /zj~+Cmn-1/2At~y(i-j+l)lzjl+MlAt’~  IziI+AtI&l,
j=l j = O

where M = 2C * Cm:=’- l/2 Tl/* max

Invokiig Lemma 5.2 gives
0~1iTlW) I.

(1 - EAt - MCmT-“*At”*)  1 zi 1

(5.13)

i - l j--l lZjl
< (Ml + E ) A t  c 1 zj 1 +MCm~-1/2At’/2  c +AtjT, I.

j = O j=l (i -j)l’*
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But
i-l ‘-1 lZjl

At c ) z, ( = At”2 c I,2((i_j)At)1’2<  T1/2At1/2’s I”’
j=O j=O (i -j) j=o  (j  -jy  .

It follows that provided At z At,, is chosen so that

EAt - MCm=-‘/2At’/2  < 1,

1 zi 1, i = O(l)N,  satisfies the inequality

f-l ‘Zj’
’ zi ’ < C’At  ’ 7: ’ +M'At"2  c

j=O (i -j)
l/2 ’

i = O(l)N,

for some C’, M’ > 0.
By Lemma 4.1

ITI<
I

ClAt”2  + O(At), i = l(l)r  - 1,

C,At + 0( At’), i = r(l)N,

(with T, = 0).
Employing Corollary 5.1 with (Y = : yields

l’il G
I’

C;At3’*  + O(At’), i = l(l)r - 1,

C;At’+  O(At”‘), i = r(l)N.

This proves (4.2).
The error .?, = ~(1, ti) - u,, i = O(l)N, satisfies

1-l
e^, = mK1’2 C y(i -j)(e,+, - e,) + c,

J=o

with e^, = 0.
By (5.13),  for i = l(l)r - 2,

i - l
2c*

C y(i -j) < xtfj2 <
2C *r1j2

J=o
At’/2  ’

Using (4.2) and Lemma 4.2 the bound (4.3) is now immediate for i = l(l)r - 2.
For i = Y - l(l)N,

r-2

I 6 I <rn7 -1’2 c di -j)  I eJ+l -e/l+ k Y(i--j)Iej+l-e,I
j=O j=r-1 :

and

From (5.13),  (4.2) and Lemma 4.2 the bound (4.3) follows for i = r - l(l)N. The theorem is thus
proved. q
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From Theorem 4.1 it follows (by recalling (4.4)) that away from the origin the discretizations
(3.11),  (3.12) for evaluating Bi, ui, respectively, are convergent of order one.

6. Numerical results

Let 8;, t&, ed and a,, i?,, ii, denote the computed values of e(t) and ~(1, t), at a given fixed
point t, obtained by steplengths At, 2At, 4At, respectively. Suppose that the cumulative errors
for the 8- and u-schemes, defined by (3.11),  (3.12),  are proportional to M,Atq*  and M2Atq2,
respectively, where M,, qi, i = 1, 2, are unknown constants.

Then

0(t)  -s; = MIAtql, e(t) - e; = MI(2At)q’, 0(t)  - t& = M,(4At)“,

and

~(1, t) - tii, = M2Atq2, ~(1, t) - ii, = M2(2At)q2, ~(1, t) - ii, = M2(4At)‘*.

(Note that in general equality does not hold but for simplicity is assumed here: the argument
used is intended to be a heuristic one.)

Hence

Solving for e(t) gives the Aitken extrapolation formula

e(t) = e; - (8; - e,)‘/(e, - 2e”, + @J, (6.1)
and similarly

U(l,  t) = ii, - (i& - ii2)2/(fi, - 2ii, + iid).

The parameters

x,=(&-S)/(e,-8;), x2=(&-ii*)/(ii2-I&),

(6.2)

(6.3)

which have theoretical values of 2q1, 2q2,  respectively, will be used to verify the rates of
convergence obtained in Theorem 4.1.

Consider now some numerical results. The method was implemented with various values
assigned to the constants E, L, m, within the range of values of practical interest for the
problem (1.1); details of the constants E, L, m and their range of values are given in [6]. Results
are presented in Table 1 for E = 100, L = 0.01, m = 1.0 with stepsizes At = 0.01, 0.02, and 0.04
up to T = 2.4. For T = 0.4, 1.0, 2.4 1 was chosen to be 1 = 3, 4, 7 respectively. This ensures that e
in (3.5) is less than 10-s. Figure 1 shows 8(t) and ~(1, t) over [0, 2.41 with At = 0.01, I = 7.

The expected values of x1, x2 were x1 = x2 = 2. Estimates of x1,  x2 obtained using (6.3) agree
closely with this expected value, confirming that convergence of the 8- and u-schemes is of order
one.

As t + M equilibrium results. Let ~(1, t) + D and O(t) + 6 as t-j co. From (1.1~)  and (l.lf)
8 and fi satisfy

LfJ=  (l- &)a, m8^=1-G. (6.4a,  b)
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Table 1
E = 100, L = 0.01, m = 1.0
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At 0, A u, A

(t,=0.4,  l=3)
0.01 0.6523 0.0586

0.0174 - 0.0153
0.02 0.6349 0.0739

0.0314 - 0.0272
0.04 0.6035 0.1011

Extrapolated values: 0.6739 0.0389

(t, = 1.0, I = 4)
0.01 0.8607 0.0805

0.0117
0.02 0.8490 0.0847

0.0226
0.04 0.8264 0.0949

Extrapolated values: 0.8613 0.0776

- 0.0042

- 0.0102

(t, = 2.4, I = 7)
0.01 0.9038 0.0943

0.0013 0.0005
0.02 0.9025 0.0938

0.0035 0.0008
0.04 0.8990 0.0930

Extrapolated values: 0.9046 0.0951

1.0

u(1,t)__-_-_-------------_------
\ .________-----

_________-------

0. 0 -f wt
o.cJ 0.2 0.4 0.6 0.8 1.0 1.2 1.4 I.6 1.8 2.0 2.2 2.4

Fig. 1. E = 100, L = 0.01, m =l.O.
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Note that 8, ii are independent of E.
Equations (6.4a), (6.4b) may be solved for t?, a. In the case L = 0.01, m = 1.0 (E = 100) they

yield

e = 0.9049, ; = 0.0951

which may be compared with the extrapolated values as t increases.

7. Concluding remarks

An order one explicit scheme has been used to solve the nonlinear Volterra integro-differential
equation (1.4) and hence to find the solution of equation (1 .l) on the boundary x = 1. It is then
straightforward to solve (1.1) in the interior 0 -C x < 1, t > 0 using, for example, the simple
implicit method. Numerical results are presented in [6].

A discrete Gronwall inequality has been presented which has been designed to exploit the fact
that near the origin the scheme for solving (1.4) is only consistent of order At’j2 but away from
the origin is consistent of order At. This Gronwall inequality has been employed to prove
convergence of order one, and this is confirmed by the results of numerical experiments.

It is possible using similar, but more complex analysis, to develop product integration or
polynomial collocation schemes for the integro-differential equation (1.4) which would be of a
higher order if the solution of (1.4) were smooth on [0, T]. However, the non-smoothness of the
solution near the left end point of the range of integration means that such a scheme will still
only be consistent of order At’12 near the origin, which would again lead to convergence of only
order one.
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