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Lighthill has derived a nonlinear singular Volterra integral equation to describe the 
temperature distribution of the surface of a projectile moving through a laminar 
boundary layer at high Mach numbers. This paper presents high order product 
integration methods for its numerical solution and analyses their convergence. 
Numerical results are given. 

KEY WORDS: Singular Volterra equation. product integration methods, high 
accuracy. 
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1. INTRODUCTION 

Consider the Volterra integral equation 

Lighthill [5] obtained two series solutions, one for small z and 
one for large z and faired these two curves together. 

Following Noble (see Anselone [I], p. 215) using Abel's-type 
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174 N B. F R A N C 0  A N D  S. McKEE 

inversion formula it is not difficult to show that (1.1) can be 
rewritten in the more convenient form 

Franco, McKee and Dixon [3] have employed a novel Gronwall 
lemma to demonstrate the convergence of a simple product in- 
tegration method for solving (1.2). The object of this paper is to 
present a family of high order methods and show that they are 
convergent. 

2. THE NUMERICAL METHOD 

Consider the Volterra integral equation 

The method we shall propose replaces [y(s)14 by some high order 
interpolating poiynomial. 

Let t = t ,  = ih where h is the mesh spacing and is defined to be such 
that N h = t , =  1. 

We define for all h E (0, h,), h, > 0, the function 

A,:C[O. I ]+RY+'  

such that 

Let @,z = 0 define all algorithms such that 

Rewrite Eq. (2.1) in the form 
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PRODUCT INTEGRATION M E 1  HODS 

and replace [y(.s)14 for s  E [t,, t ,  + ,] by 

1 " - 1  Cy(tj+JI4 n - j  n ( s - t , + J ,  0 s  j s n -  l 
- + - - 

k f l  

P,,(s) = { (2.3)  

i :  C Y ( ~ , + ~ ) I ~  I n ( ~ - t , + k ) >  If1 , , ,, ( - 1 ) ' - ' ( / + a - 1 ) ! ( 1  -!)! L - I  }, 

k f l  

We can define the algorithm 

where j ,  0  5 i 5 n - 1 ,  are given initial values, y, is an approximation 
to y( t , )  and 
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176 N. B. FRANC0 AND S. McKEE 

Here we have used and subsequently use the notation 

ql=min {j- I, i-a- 11 

and 
q,=min{i-1, j+n - I ) .  

Also here and henceforth we have used the notation 

if O denotes the empty set. 
In matrix notation (2.4) becomes 

4 7 where y4 = (y;, y:, . . . , y N )  

wi,, n z i s N ,  0 5 , j Z i - I  
0 otherwise 

and 
B, = diag (0,0,. . . ,0, w,,, . . . , w,~,) with n zeros 

3. CONSISTENCY 

We begin by defining what we mean by convergent starting values. 
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PRODUCT INTEGRATION METHODS 177 

DEFINITION 3.1. The starting values j ,  i = 0, I , .  . . , n - I are said to 
be convergent of order n+ 1 if, for O l i s n - 1 ,  there exists C , ,  
independent of h and N, such that 

THEOREM 3.2 T h e  discretization @, is consistent of' order n+  1 if 
there exlsts C, inde,vndenl of h and N ,  such that for all iz n we hazle 

Proof We need only consider 

where Pn(s) is defined by (2.3) and J ' ( y ( s ) )  = [y(.s)]4. 
Using the error formula for interpolation (e.g. Isaacson and Keller 

[4], p. 190) we have 
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178 N. B. FRANC0 AND S. McKEE 

Here we have used and subsequently use the notation 

Then using (3.2) and the fact that for 

and that for 0 5  j z n -  1, 

max {Inl;j(s)l) = ( j +  l)!hj+'h(n- j ) !hnp j - ' ,  
~ ~ [ l , . ' ~ + , l  

we can write 

where 5; E ( t j ,  t j+  J. 
Hence on evaluation of the integral 
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PRODUCT INTEGRATION METHODS 

Therefore 

since 

and so 

since t , = N h = l .  
This completes the demonstration of consistency. 
Before stating a convergence theorem a 

quadrature weights w i j  

LEMMA 3.2 The quadrature weights wij are 

1 M ,  j = O  

bound is required on the 

bounded us follows: 

where M is some constant independent of i, j and h. 

Proof The demonstration of this result is not difficult but is 
tedious due to the many cases that need to be considered (see 
Franco [2]). 

We are now in a position to prove the convergence of the method. 
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180 N. B FRANC0 AND S. McKFE 

4. CONVERGENCE 

Before proving convergence we require a lemma from Franco, 
McKee and Dixon 131. 
LEMMA 4.1 Let xi, i = O,1 , .  . . , N he a sequence of real nurnbers 
satisfying: 

JxoJ ,<a, 

where 6 > 0, M > 0 is independent of' h, then 

xexp($M3B($,9B($i)), i=O, I , .  . ., N. (4.2) 

THEOREM 4.2 Suppose that the discretization @, is consistent of' order 
n + 1 and that the starting values are convergent of' order n+ 1. Then 
(he discretization Qh is convergent of order n + 1 .  

Proof. lJsing (2.6) and adding and subtracting ( 3 $ / 2 n ) ( h ~ , +  
~ , ) A ~ [ y ( t ) ] ~  and using the triangle inequality results in 

using consistency and convergence of the starting values. 

D
ow

nl
oa

de
d 

by
 [

th
e 

B
od

le
ia

n 
L

ib
ra

ri
es

 o
f 

th
e 

U
ni

ve
rs

ity
 o

f 
O

xf
or

d]
 a

t 0
4:

42
 2

0 
D

ec
em

be
r 

20
13

 



PRODUCT INTEGRATION METHODS 181 

Since y is bounded (Lighthill [ 5 ] )  the function f ( y ) =  y" is 
Lipschitz continuous with Lipschitz constant L, say. Thus 

Finally from Lemma 3.1 we have 

and 

((B,) ,~( = lwiil 5 Mh'I3, i 2 n. 

Therefore for h sufficiently small 

where M'=(3$/2n) L and 6 =  Chn+'/(l  - ~ ' h ' ' ~ ) .  
Since /yo - ~ ~ y ( t ~ ) (  5 clh"+ we have 

where M = M t / ( l -  M'h'I3). 
Application of Lemma 4.1 leads to the required results. 
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182 N. B. FRANC0 AND S. McKEE 

5 .  NUMERICAL RESULTS 

Equation (2.1) was solved by the product integration methods (2.4) 
of orders one, two and three. Table I displays the values obtained 
with mesh spacings h=0.25, 0.025 and 0.0025 and convergence 
would appear to be being obtained. In Figure 1, the result with n = 2  
(order 3 method) and h=0.025 is presented graphically. It is seen to 
display good agreement with those obtained by Lighthill's asympto- 
tic methods and his somewhat ad hoc approach of fairing together 
the two curves, one having been obtained from a small z asymptotic 
expansion and the other from a large z expansion. These results 
therefore justify Lighthill's approach. 

0.0 .50 1 .O 1.5 2.0 t 

FIGURE 1 
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