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Abstract. This paper is concerned with the modelling of the evolution of a chemical reaction within a small 
cell. Mathematically the problem consists of a heat equation with nonlinear boundary conditions. Through an 
integro-differential equation reformulation, an asymptotic result is derived, a perturbation solution is developed, 
and a modified product integration method is discussed. Finally, an alternative integral formulation is presented 
which acts as a check on the previous results and permits high accuracy numerical solutions. 

1. The biosensor device 

An optical biosensor is a small device which uses optical principles quantitatively to convert 
chemical and biochemical concentrations, of interest in biology, into electrical signals. The 
sensor may also itself incorporate biological molecules, such as antibodies, to provide a 
transducing element that gives the desired specificity. The sensor to be considered here is 
a disposable type of immunosensor, the fluorescence capillary fill device. It consists of two 
pieces of plastic, separated by a narrow gap, as shown in schematic form in Fig. 1. The lower 
plate is coated with an immobilized layer of specific antibody and acts as an optical waveguide. 
One of the plates has a dissoluble reagent layer of antigen labelled with fluorescent dye. When 
a sample is presented to one end of the capillary fill device it is drawn into the gap by capillary 
action and dissolves the reagent. If the device is set up for competition assay, the fluorescently 
labelled antigen in the reagent will compete with simple antigen for the limited number of 
antibody binding sites on the waveguide solid face. 

Since the reactions are reversible a steady state will be reached in which there are a certain 
proportion of  labelled antigen/antibody complexes. If there were no antigen present in the 
sample all the labelled antigen would react with the specific antibody displaying, through 
the optical waveguide, a different signature. Metering of the sample and the reagent then 
becomes unnecessary provided the capillary gap is precise and there is accurate loading of 
the antibody and reagent during the device manufacture. A typical medical product based on 
this antigen/antibody technology is a particular kind of pregnancy kit. A full description of 
the fluorescent capillary fill device can be found in Badley et al. [1]. 

The primary interest is in the determination of the size of the device and the amount of 
specific antibody to be coated on the lower plate within a specified time. For this reason the 
labelled and unlabelled antigen will not be differentiated and will be considered to be one 
species X,  which reacts with the labelled antibody Y, on the lower plate to produce a complex 
X Y .  

This paper outlines the model development. It provides an asymptotic solution for small 
time. This shows that the concentration of the complex (the substance resulting from the 
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Fig. 1. Schematic diagram of the fluorescence capillary-fill device (FCFD) illustrating a competition immunoassay 
for a desired antigen or hapten. (a) Cutaway view of device showing construction and optical waveguiding 
principles. (b) Enlarged inset of gap in the empty device showing immobilized antibody layer on lower plate 
and dissoluble reagent layer on upper plate. (c) Enlarged inset of gap in the filled device showing competitive 
immunological binding of the desired antigen or hapten and its fluorescently labelled counterpart (the conjugate) 
to the limited number of antibody molecules. Sandwich-type immunoassays are also possible in this device. 

chemical reaction of  the antibody and the antigen) is not a smooth function of  time and so 
indicates limitations on the direct use of  finite differences. A perturbation solution is then 
developed using a non-dimensional parameter (the molar ratio - see Section 2). This proves 
to be an accurate representation for small values of  this parameter and hence a useful check 
on the numerical results. Following Dixon [2] a numerical method is written down and a 
modification is suggested which is seen to overcome the loss of accuracy for small time. 
Finally, an alternative integral formulation is presented. This allows a derivation of  further 
asymptotic results which are seen to agree with earlier results. For this formulation, high 
accuracy is achievable by subtracting out the singularities. 

2. The mathematical  model  

In this Section the mathematical model of  the reaction-diffusion process is developed. 
The details of  the following modelling analysis can be found in Burgess et al. Let X 

denote the antigen concentration and Y denote the antibody concentration. The reaction is 
given as 

kl 
x + Y ~ X Y ,  

k-I 

where kl and k-1 are the forward and backward reaction rates. 
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Let [X] denote the concentration of X (in moles/mS), [Y] denote the concentration of Y (in 
moles/m 2) and [XY] denote the concentration of X Y  (in moles/m2). We require the following 
constants: 
a0: initial X concentration (moles/mS), 
co: initial Y concentration at the reaction side wall (moles/m2), 
d: edge of vessel to surface (m), 

D: diffusion coefficient of X (m2/s). 
If we ignore edge effects we can neglect any diffusion in the y-direction and [X] satisfies the 
diffusion equation 

o [ x ]  _ D 02[X] 
O t  OX 2 " 

Also 

O[X]_o at x = 0 .  
Ox 

Further [X]t=o = ao since the concentration is assumed uniform initially. 
We need, however, the boundary condition O[X]/Ox at x = d on the antibody surface. To 

facilitate the discussion let us introduce the notation: 

u(x, t) - concentration of X i.e. [X], 

-y(t) - concentration of X Y  i.e. [XY]. 

Now the law of mass action states 

D~xx(d , t) = k-17(t)  - klu(d, t)[Y], 

where we have assumed that one molecule of X and one molecule of Y combine to give one 
molecule of the complex X Y .  

The initial concentration of Y is co. This will be depleted by the amount of X used up in 
the reaction. Therefore, 

[ Y ] ( t ) = c o -  ( a o d - f o d u ( x , t ) d x ) .  

Thus 

D (d,t) = k-vy( t )  - klu(d,t) c o - a o d +  u(x , t )dx  . (2.1) 

In addition, the conservation of the total number of species X,  either in solution or bound in 
the complex X Y ,  is given by 

fod u(x, t) + 7(t) = aod. (2.2) dx 

Equations (2.1) and (2.2) together imply 

D~__ (d, t) = k_l~/(t) - klu(d, t)(co - 7(t) ). 
51X 
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Summarising, a consistent model of the antibody-antigen reaction is 

0?Z t) 02it" 
~ - ( x ,  = D~-gxZ (x, t), (2.3a) 

subject to 

u(x ,  O) = ao, (2.3b) 

and the boundary conditions 

0~(0 ,  t) = 0, (2.3c) 

D ~ x ( d  , t) = k-17( t )  - k lu(d ,  t)(co - 7(t)) ,  (2.3d) 

together with 

fOd U(X, t) "4- ~'(t) = aod. (2.3e) dx 

By introducing the non-dimensional variables 

x'  = x / d ,  t' = (D/d2) t ,  

and scaling the dependent variables 

u'(x ' ,  t') = u(x ,  t) /ao,  7'(t ' )  = ~/(t)/co, 

it is not difficult to see that (2.3) can be rewritten as 

OU 02U 
- -  (2.4a) 0U 0X 2' 

subject to 

u(x ,  0) = 1, (2.4b) 

and 

_~x(O,OU t) = 0, (2.4c) 

and 

Ou . 1 E m  L " 
-~x ( , t) -- 1 -+-L ( 7 ( t )  - (1 - 7(t))u(1,  t)), (2.4d) 

together with 

/o l m'y(t)  + u(x ,  t) dx = 1, (2.4e) 

where the primes have been omitted for clarity. The constant m = co/(aod) is the molar ratio, 
L = k - l / k l a o  is the reaction time scale ratio, and E = (klao + k - l ) d 2 / D  is the diffusion 
reaction time scale ratio. 
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3. An integro-differential equation formulation and analytic and numerical 
solutions 

In this section, a Volterra integro-differential equation is formulated for 3'(t). Using this 
formulation an asymptotic solution of 3"(t) for small t is obtained. Treating 3' as both a 
function of t and the molar ratio m,  a regular perturbation for 3"(t; m)  is derived for small 
m. Finally, a product Euler scheme due to Dixon [2] is presented and a modified version, 
which is designed to cope with the low order convergence of Dixon's scheme near t = 0, is 
proposed. 

3.1. REFORMULATION AS AN INTEGRO-DIFFERENTIAL EQUATION 

Differentiating (2.4e) with respect to time we obtain 

l OU.x t) dx=O,  

and using (2.4a) and (2.4c) gives 

_ r o T ( t )  = ,gu ~ x ( 1 , t )  • (3.1) 

Taking Laplace transforms of (2.4a) with respect to t, after some manipulation involving the 
convolution theorem (see Burgess et al. [3]), we obtain 

fot s) Ou "l,s) ds, u ( 1 , t ) =  1 +  k ( t -  -~z ( 

where 

k ( t ) -  1 2 Z e x p  /__;1 1 +  - . 
vTr~ n = l  

Thus, using (3.1), we obtain 

f0 t u(1 , t )  = 1 -- m k(t  - s) (s) ds. 

(3.2) 

(3.3) 

Using (3.1) and (3.3) in equation (2.4d) yields 

7 ( t ) =  C - E T ( t ) - C m ( 1 -  7 ( t ) ) f o t k ( t - S ) ~ s ( S ) d s ,  (3.4) 

where 

E 
C -  I + L '  (3.5) 

with initial condition -),(0) = 0. 
Once 3' is known, equation (3.3) may be used to obtain u on the boundary x = 1, and thus 

(2.4a) may be solved using (2.4b), (2.4c) and the value of u(1, t) to determine u in the interior 
0 < x < t, t > 0 (see Burgess et al. [3]). 
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3.2. AN ASYMPTOTIC SOLUTION 

In this subsection we consider the behaviour of 7(t) for small t. 
Noting that when t is small, 

7(t) = o(1), 

and 

fot ~ss ( s ) k ( t -  s )ds  = o(1), 

we obtain from (3.4), for small t, 

~ ( t )  = + o(1), (3.6) C 

which yields 

7(t) = Ct  + o(t). (3.7) 

Furthermore, since when t ~< (1 / In 2), 

E e x p  - ~< E e x p  - ~< ~<2exp - =o (1 ) ,  
n=l n : l  - exp [ - ~ )  

we have from (3.4), (3.6) and (3.7), 

f0 t 1 + o ( 1 ) ( C + o ( 1 ) ) d s + O ( t )  (t) = C - Gin(1 + O(t)) v / ~ / t  - s 

2C2m ! 
= c - ~  t~ + o( t ) ,  

which admits 

4CZrn 3 
7( t )  = c t  - 3 v ~  t~ + o( t2) .  (3.8) 

This asymptotic expansion has also been derived by Dixon [2] using a different approach. 

3.3. A PERTURBATION SOLUTION 

We consider an analytic expansion of 7(t)  = 7(t; m) in powers of the molar ratio rn. 
For small m, let 

7(t ;rn)  = 7(°)(t) + rnT(l)(t) + O(rnZ). (3.9) 

Inserting (3.9) into (3.4) and omitting the o(1) terms results in 

dT(°) 
d---~ (t) = C - E 7(°) (t), (3.10) 

which leads, on noting that 9 '(0) (0) = 0, to the zero order approximation of 3' 

1 (1 - -  e-Et). (3.11) 
7(°)(t) -- 1 + L 
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Similarly, balancing the O(m) terms in (3.4) we have 

dT(1) fot k(t dT(°) d---~(t) = -ET(1)(t)  - C(1 - 7(°)(t)) - s)--~-s(S ) ds, (3.12) 

which reduces to 

d,y0) 
d----v(t) = - E T ( ' )  (t) - C 2 { 1 

1 t 
1 + L ( 1 -  e x p ( - E t ) ) }  fo e x p ( - E s ) k ( t - s ) d s .  

(3.13) 

Multiplying by exp(Et) on both sides of (3.13) gives 

d /o (70)(t)exp(Et)) - 1 + L  (1 +Lexp(Et))  e x p ( - E s ) k ( t - s ) d s .  (3.14) 

Since ~,(1) (0) = 0, we can integrate both sides of (3.14) to obtain 

C2 fotfo t' "3 ,(l)(t) - 1 + L e x p ( - E t )  (exp(Et')L + 1) exp(-Es)k(t '  - s) ds dt'. (3.15) 

Changing the order of integration in (3.15) followed by the transformation 

t ' - = u +  s 

and again, changing the order of integration, finally results in 

C e x p ( - E t )  fot 7(1)(t) - (1 + L) 2 k(u)(1 - e x p ( - E ( t -  u)) 

+LE(t  - u) exp(Eu)) du. (3.16) 

The right hand side of (3.16) can be evaluated by numerical quadrature using the trapezoidal 
rule or Simpson's rule, with the truncated expression for k(u) discussed in Section 3.4 and 
Dixon [2]. 

Figures 2 and 3 compare the results obtained using the expansion (3.9) (in Figs. 2 and 3, 
zero order and first order approximations refer to 3,(0) (t) and 7 (0) (t) + rn7 (1) (t) respectively) 
and the accurate solutions obtained by using the proven convergent product integration scheme 
(see next subsection and Dixon [2]) with a very small time step. 

For the case m = 0.1 Fig. 2 shows reasonable agreement between the various sets of 
results, as might be expected. However, for m = 0.5 the agreement is rather poor. It may be 
noted that 3, (0) (t), 7(0) (t) + rnT0) (t) and the numerical solution approach different constant 
values as t --~ oe. But we know from Jumarhon and McKee [4] that 

lim 7(t) = __1 (1 - ¢*) 
t - + c ~  m 

where 

j ) = ~  1 - m - L +  ( 1 - m - L ) 2 + 4 L  . 

It is not difficult to show that 

m 2Lm 2 
q~* ----- 1 1 +--L -t- (1 -b L) 4 -t- O(m 3) 
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Fig. 3. L = 0 .1 ,  E = 10 .0  m = 0 .5 .  

giving 

lim 1 2Lm -- + O ( m  2) 
t~c¢ 1 + L  (1 + L )  4 

so that we may write 

lim 7( t )  = l im 7 (°)(t) + l im 3, ( ')(t)  + O(m 2) 
t - - + ~  t --+oo t - - + ~  

with 

2L 
lim 7(°)(t) -- 1 and turn  7 ( U ( t ) -  (1 + L )  4" 

t ~  1 + L 

Since ,y(0)(t) = 1/(1 + L)(1 - e -Et) this shows that at least the O(1) approximation of  the 
perturbation solution trends, in the limit as t --+ cx), to the correct asymptotic value. 
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3.4. m PRODUCT INTEGRATION METHOD AND ITS MODIFICATION 

Before attempting to derive a numerical method two observations may be made: firstly, by 
differentiating (3.8) it can be seen that 7(t) does not have a bounded second derivative at 
t = 0; secondly, for a method to be of practical use the infinite kernel given by (3.2) must 
be truncated. The first observation implies that the direct use of product integration schemes 
cannot produce high order accuracy; the second suggests the following truncation: 

k ~ ( t ) - ~ - ~  l + 2 ~ e x p -  . 
n = l  

Following Dixon [2], 

, k ( t ) - k t ( t ) l  < l - i f  ( l ~ )  , (3.17) 

where if(z) is a normal function; tables of if(z) may be found, for example, in Abramowitz 
and Stegun [5]. For given T and e > 0, l is chosen so that 

I k ( t )  - k t ( t ) l  < e forall  t E [0,T]. 

It follows that 1 is chosen such that 

The numerical method which will now be proposed for equation (3.3) will be of product 
integration type. For details, see Dixon [2] where a convergence analysis of the method is 
presented. 

Let ti = ih, i = 0, 1 , . . .  , N ,  N h  = T; 7i and ui will denote approximations to 7(t i)  
and u (1, ti) respectively. Using the approximation (~i - "~i)/h for -~' (ti), the product Euler 
method for the integral, and replacing 1 - ")'(ti) with 1 - 7 / - l ,  an explicit product integration 
scheme for (3.4) can be obtained (see Dixon [2]), 

'~0 ~ 0, 

, ,  ( ) "~i ")'i-I _ C _ E 7  i _ , , / i _ l ) h  Z ot(i _ j ) 7 j + l ~  Tj 
h ~ j=o ' 

i = 1 , 2 , . . . , N ,  (3.18) 

where the quadrature weights a(i  - j )  are given by 

}fj+, ds 
a ( i -  j )  = -~ 1 +  

,~=1 .,t~ v N ,  - s 

j = 0 , 1 , . . . , i -  1, i = 1 , 2 , . . . , N .  

Discretising (3.3) in a similar way gives 

i - I  

ui----- 1 -  V/~ j=o i = 1 , 2 , . . . , N .  
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The numerical scheme (3.18) yields a global convergence of order ½ due to the t 3/2 term in 
the expansion of 7(t) for small t (see equation (3.8)). 

Methods of coping with nonsmoothness of solutions of Volterra integral equations have 
been studied by many authors, for example, Brunner [6], who suggested nonpolynomial spline 
collocation, and by Norbury and Stuart [7] who studied the idea of applying an algebraic 
transformation to the variables of the integrands. Here we use the technique of subtracting out 
singularities, which was introduced by Eggermont [8] in a numerical example. 

To obtain a scheme of order one convergence, consider the following identity, 

4C2m 3~' 2C2mt½ ='y'(t), 

and note from (3.8) that ~(t) + [(4C2m)/(3x/~)]t 3/2 is twice continuously differentiable. 
Let 

= 1 ( 4C2m .3/2 - -  4C2m~tn!3J2~l = -- 
# n + l  ~ \"Yn+l -Jr" - - ~ / ; n + l  "/n 3~/r  ] , n 0, 1 , . . . ,  N 1. 

Thus by replacing the left hand side of (3.18) with #i - [(2cam)/(v/-ff)]t~/2, and replacing 
the expression c~(i - j)[(7j+1 - 7j)/h] in the right hand side of (3.18) with 

2C2m 
. ( i ,  j )  = - J ) m + l  Z(i ,  j )  

where 

/3(i,j) = ~ 1 +  
n=l Jtj ~/ti - s 

j = 0 , 1 , . . . , i -  1, i = 1 , 2 , . . . , N ,  

we obtain a numerical scheme with order one convergence, 

70 = O, 
i--1 

2C2m 1 C m ( 1 - T i - 1 ) h Y ~ u ( i , j ) ,  i = l , 2 , . . . , N .  (3.19) #i vf  ff t[ = C -  E T i -  - ~  j=o 

Obviously (3.19) allows an explicit solution of 7i (i = 1 ,2 , . . . ,  N). Similarly we have an 
order one approximation for u(1, ti) 

i -1 m 
ui= 1 - - - = h ~ u ( i , j ) ,  i = l , 2 , . . . , N .  

~/~ j=0 

4. An alternative integral formulation and high order numerical solutions 

In this section, an equivalent system of Volterra integral equations is obtained for the initial- 
boundary value problem (2.4). Using this integral formulation, high order product integration 
schemes are derived. 
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4.1. A VOLTERRA INTEGRAL FORMULATION 

In this subsection we develop an alternative integral formulation which allows us to construct 
arbitrary high order schemes by subtracting out the singularities. 

Modifying the results of Cannon [9], Jumarhon and McKee [4] have shown that for piece- 
wise-continuous g, HI and continuous HE, the solution of the following problem 

OV oEv 
= O < x <  1, t > O  (4.1a) 

Ot Ox 2 ' 

V (x ,  O) = g(x), 0 < x < l, (4.15) 

OV(o, t )  = Hi(t), t > 0, (4.1c) 
Ox 

OV~xx (1,t) = H2 ( t , V ( 1 , t ) ,  jo / , t > O ,  (4.1d) 

can be written as 

v(x,t) f0 t = w(x , t )  - 2 O ( x , t -  s )H l ( s )ds  

+2 O(x - 1,t - 8)H2(8,rll(S),r12(s))d8 (4.2) 

~ ( 1 , t )  = F ( u ( 1 , t ) , f o l u ( x , t ) d x )  

( So 1 So' ) = C L -  ( m -  1)u(1,t) - L u(x , t )  d x -  u(1,t) u(x , t )  dx 

(4.3b) 

(4.4) 

(4.5) 

(4.6) 

/o 1 /o ~ /o' r#2 (t) = w(x,t) d x -  Hl(8) ds + n2(8, rll(8),r12(8))ds, 

with 

/o 1 w(x,  t) = {O(x - z, t) + O(x + z, t)}g(z) dz, 

and 

O(x , t ) - -  1 + ~  ( ( x+2n)2~  
4v~Tn_-_ exp ~7 ]" 

Now, by re-writing the boundary conditions (2.4d) and (2.4e) as 

where r#l (t) = V(1, t) and r#2(t) = f~ V(x ,  t) dx are piecewise-continuous solutions of the 
following system of Volterra integral equations, 

/0' /o' r#l(t) = w(1, t )  -- 2 O ( 1 , t -  s )H~(s)ds  + 2 O(O, t -  s)HE(s,n~(s) ,n2(s))ds,  

(4.3a) 
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and using the results from Jumarhon and McKee [4], 

/0 /01 l { o ( z + z , t ) + O ( z - z , t ) } d z = l ,  O ( z - l , t ) d z = ½ ,  

the solution of the initial-boundary value problem (2.4) can be written as 

u(x , t )  = 1 + 2  O(x - 1 , t -  s)F(~bl(s),~b2(s))ds, (4.7) 

where ¢1 (t) = u(1, t) and q52(t) = f~ u(x, t) dx are piecewise-continuous solutions of 

~bl(t ) = 1 + k(t-s)F(qbi(s) ,~b2(s))ds,  (4.8a) 

J0 ~b2(t) = 1 + F(~bl (s), q~2(s)) ds, (4.8b) 

where k(t) is as defined in (3.2). The system (4.8) is a coupled system of Volterra integral 
equations of the second kind, with (4.8a) having an unbounded but integrable kernel. The proof 
of the existence and uniqueness of the solution of the system of Volterra integral equations 
(4.8) on [0, oe) is given in [4] thus establishing the existence and uniqueness of the solution 
of the initial-boundary value problem (2.4) on [0, oo). 

4.2. HIGH ACCURACY NUMERICAL METHODS 

Recently, Lubich [10] studied the structure of solutions of systems of Abel-Volterra integral 
equations of the second kind. The weakly singular kernel of (4.8a) suggests that we might 
apply the same argument as Lubich [10] to show that (4.8) has the asymptotic solution 

q~l(t) = 1 + a l t l / 2 + a 2 t +  . . .  , q~2(t) = 1 + b l t l / 2 + b 2 t +  . . . ,  (4.9) 

near t = 0. Replacing q~l (t), ~b2(t) in (4.8) by (4.9) gives the expressions 

2Crn 1"2 4C2rn - 
fhl(t) = 1 --v~ t / + C:rn2t + - - ~ - ~  (1 + L - Crn2)t 3/2 + O(t2), (4.10a) 

4C2rn2t3/2 
q~2(t) = 1 - C m t  + 3v/- q + O(t2). (4.10b) 

The expansion (4.10b) confirms the asymptotic solution (3.8), since ~b2(t) = 1 - rnT(t ) by 
definition. The following asymptotic result 

lim ~bl(t) them q52(t)= q~* 1 { ~ } t ~  = = ~  1 - m - L +  ( 1 - m - L ) 2 + 4 L  

is derived in [4]. 
Intuitively one might directly apply the trapezoidal product integration method to numer- 

ically solve (4.8). But (4.10) shows that F(q~l(t), ~b2(t)) has a weak singularity of O(t 1/2) 
at t = 0, which will give rise to a loss of accuracy. Here, we again use the technique of 
subtracting out singularities to obtain high order schemes. 
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For t > 0, define 

e~(t) = - -~  l +  - . 
n----1 

This is clearly a bounded function. 
Now consider the following system for q = 1,2, 

fot Glq)(t's'¢l(S)'qb2(s)) ds, ~ l ( t )  = f(, ( )_tq),t, 2I- 
# t - -  8 

4~2(t) = f~q)(t) + (s),~bz(s))ds, 

with 

GI q) (t, s, ~)1 (8) ,  (/)2 (8))  = /~(t -- 8 ) (F(~bl  (s), ~2 (8))  -{- g(q)(s)), 

G(q)( t ,  8, q51(8), ~b2(8)) = F(qbl ( s ) ,  ~b2(s)) + 9(q)(s), 

fot g(q) ( s ) f~q)(t) = 1 - a ( t -  s) ~-QT~_ s ds , 

/o' f(2q)(t) = 1 -  9(q)(s)ds, 

where 

2 2 2 t 
gO)(s) =-v,_~C m s~, 

2 C2m281 ~/~C3m2(Cm2 - 2L - 7/2)s~. g(2)(8)  = - - ~  3 

(4.11a) 

(4.11b) 

(4.12a) 

(4.12b) 

(4.12c) 

(4.12d) 

(4.13a) 

(4.13b) 

Simple calculations show that both (4.11) and (4.12) with (4.13a), and (4.11) and (4.12) 
with (4.13b) are equivalent to the system (4.8); furthermore, Glq)(t,s, ~bl(s), (~2(s)) and 

G~ q) (t, s:qS1 (s), gb2 (s)) (q = 1,2) are q times continuously differentiable with respect to s. 
Let ~b], (~ denote the approximate solutions of ~bl(ti), dp2(ti) (i = 0, 1 , . . . ,  N) .  Then we 

have the following system of product integration schemes 

i 

j = 0  
(4.14a) 

i 

¢i + Z = t-'ij "-*2 
j=0 

(4.14b) 

q5 ° = 1, q~0 = 1, i = 1 , 2 , . . . , N ,  (4.14c) 
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where 

elq) ( t i , t j ,  q~l, ¢ j) -~ t~ l ( t i - j ) (F(~ ,  q~J2) d- g(q)(tj) ), 

(l is again chosen according to the accuracy required), and I} q) is the approximation of 
f~q) (ti) with qth order accuracy obtained by employing the product integration schemes used 
in the system (4.14). The calculation of I}q) involves polynomial interpolations of kt (ti - s), 
and analytical quadrature of the expression sv-Uz( t i  - s)-l/2 (/9 = 1,2) over [tj, tj+l] 
(j = 0, 1 , . . . , N -  1). In (4.14),when 

a~j) f t s+ '  ds = - -  , j = 0 , 1  , i - l ,  i = l , 2 ,  ,N, (4.15a) 
Jtj ~ ' . . . . . .  

a~  ) = ~iit? (1) = 0, i = 1,2, . .. ,N, (4.15b) 

f l}J)=h,  j = 0 , 1 , . . . , i - 1 ,  i = l , 2 , . . . , N ,  (4.15c) 

w e  obtain the explicit product Euler scheme, while when 

a!!) ~tfs ds z3 = ~ ,  j = 0 , 1 , . . . , i - 1 ,  i = l , 2 , . . . , N ,  (4.16a) 

O~o 1) = f/~g) = 0, i = 1 ,2 , . . . ,N ,  (4.16b) 

/3}~ ) = h ,  j = 0 , 1 , . . . , i - 1 ,  i =  1 ,2 , . . . ,N ,  (4.16c) 

w e  obtain the implicit product Euler scheme, and when 

a(2) = 1 ~o h h -  s io ~ t/~/~-z-~_sdS, i - -  1 ,2 , . . . ,N ,  (4.17a) 

a!2.) 1 ftlJl S - tj-1 1 f q + l  tj+l --8 

j = 0 , 1 , . . . , i - 1 ,  i = 1 , 2 , . . . , N ,  (4.17b) 

a!2) 1 f t~  s - ti-1 i = 1 , 2 , . . . , N ,  (4.17c) 
~ = -h t~_l  tiv~-~- s ' 

13~ ) =/3~ 2) = h/Z,  i =  1 ,2 , . . . ,U ,  (4.17d) 

/3~ 2 ) = h ,  j = 0 , 1 , . . . , i - 1 ,  i = 1 , 2 , . . . , N ,  (4.17e) 
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L=O"I [ 
- -  - -  L = 0 . 3  

L, ,O . 9  
t . - 2 o 7  

,-21  0 . 4  . . .  

0 . 0  I , , , , 
0 . 0  0 . 2  0 . 4  0 . 8  0 . 8  1 . 0  

x 

Fig. 4. L = 0 . 0 1 ,  E = 5 . 0  m = 1.0.  

I , phtt<t) I 

/ 
o 1 2 3 4 5 

t 

Fig. 5. L = 0 . 0 1 ,  E = 5 . 0  m = 1.0.  

we obtain the product trapezoidal scheme. For implicit schemes, a system of two nonlinear 
equations is required to be solved iteratively using Newton's method at every time step. By 
subtracting off more terms in the asymptotic expansions it is straightforward to construct 
product integration schemes with third order and fourth order convergence rates. 

Once approximations to ¢1(t) and ¢2(t) have been completed on the interval [0,T], 
approximations to u(x, t) may be found from (4.7) by replacing O(x, t) with the truncated 
series 

o,(x,t) - 1 ' ( + 2n)2  
4x/Q-~ ~ exp -~ ] .  

n = - - /  

An estimate similar to (3.17) exists for O(x, t) - Or(x, t) (see Jumharon et al. [11]). 
Convergence proofs for the numerical schemes (4.14) are not entirely straightforward since 

F is nonlinear and does not satisfy a global Lipschitz condition, so the standard techniques 
for proving the convergence of product integration methods for Abel-Volterra type equations 
(see, e.g., Cameron and McKee [12]) could not be employed directly. Detailed convergence 
proofs for the numerical schemes presented in this section can be found in Jumharon and 
McKee [13]. 

5. Numerical computations 

The numerical methods discussed in this paper were employed to compute u(x, t) against x 
and ¢1 (t) = u(1, t), ¢2(t) = f l  U(X, t) dx and 7(t) = [xy](t) against t. These are displayed 
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respectively in Figs. 4 and 5. Figure 4 shows u(z,  t) to be a monotonic decreasing function of 
time apparently uniform in z. However, Fig. 5 shows that this is not so at z = 1. We observe 
here initially a rapid decrease in the concentration of the antigen until a point where the 
reaction briefly becomes diffusion dominated before decreasing again to its asymptotic value. 
We note, however, that the total concentration of antigen (i.e. f~ u(z ,  t) dz) is monotonic 
decreasing with time; in contrast we note that the concentration of the complex is monotonic 
increasing with time. 

Computations have also been performed confirming the asymptotic results given in Section 
3.3; and the convergence rates of the various numerical methods given in this paper have been 
verified. 

6. Concluding remarks 

This paper has been concerned with the modelling of a chemical reaction within a small cell. 
A reaction-diffusion system was constructed, nondimensionalised and, through the use of 
Laplace transforms, reduced to an integro-differential equation. Asymptotic results for both a 
small and large time were given; a regular perturbation solution was derived; and a numerical 
method was discussed at length. In addition, an alternative integral formulation using the ideas 
of Cannon was formulated and numerical methods for its solution were set out. 

These mathematical techniques were used to facilitate the design of a specific anti- 
body/antigen product: a pregnancy testing kit. If a particular antigen was present in the 
urine (the bulk fluid in the cell) then the chemical reaction of the labelled antibody would, 
(through a biosensor) produce a signature which would manifest itself as the colour blue. The 
bioscientists were anxious that the product should provide a signature in reasonable time and 
consequently needed some indication of the size of the cell (i.e. d) and the amount of specific 
antibody to afix to the 'side wall' - in this case a dip stick. The results of this paper quickly 
answered these questions, thus saving a large amount of experimental analysis. For instance, 
from Fig. 5 we note that the asymptotic value of the complex is attained when (nondimension- 
al) time is approximately equal to 3. Thus t -~ 3(d2/D) is the time required for the woman to 
wait until the dip stick has turned blue. Marketing deemed that this should be no more than 
ten minutes: this immediately determined the size of the device. 

The point of this paper was not simply to relate a case study, but rather to provide a 
number of mathematical tools, namely asymptotic analysis techniques, perturbation methods 
and numerical schemes, for mathematically orientated bioscientists and engineers interested 
in developing other (possibly very different) products based on this antibody/antigen technol- 
ogy. 
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