
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING

Int. J. Numer. Meth. Engng. 45, 1737}1755 (1999)

ORDERING SYMMETRIC SPARSE MATRICES
FOR SMALL PROFILE AND WAVEFRONT

J. K. REID* AND J. A. SCOTT

Computational Science and Engineering Department, Rutherford Appleton ¸aboratory, Chilton, Didcot OX11 0QX, ;.K.

SUMMARY

The ordering of large sparse symmetric matrices for small pro"le and wavefront or for small bandwidth is
important for the e$ciency of frontal and variable-band solvers. In this paper, we look at the computation of
pseudoperipheral nodes and compare the e!ectiveness of using an algorithm based on level-set structures
with using the spectral method as the basis of the Reverse Cuthill}McKee algorithm for bandwidth
reduction. We also consider a number of ways of improving the performance and e$ciency of Sloan's
algorithm for pro"le and wavefront reduction, including the use of di!erent weights, the use of super-
variables, and implementing the priority queue as a binary heap. We also examine the use of the spectral
ordering in combination with Sloan's algorithm. The design of software to implement the reverse
Cuthill}McKee algorithm and a modi"ed Sloan's algorithm is discussed. Extensive numerical experiments
that justify our choice of algorithm are reported on. Copyright (1999 John Wiley & Sons, Ltd.

KEY WORDS: sparse matrices; symmetric pattern; pro"le reduction; Sloan algorithm; reverse Cuthill}McKee
algorithm; spectral method

1. INTRODUCTION

We consider the ordering of symmetric sparse matrices for small pro"le and wavefront or for
small bandwidth. We are primarily concerned with matrices that are positive de"nite, so we work
only with the pattern of the matrix and do not take into account any permutations needed for
numerical stability. The work is useful for a matrix that is non-de"nite or is symmetric only in the
pattern of its entries, but in these cases it must be appreciated that the actual factorization may be
more expensive and require more storage. For "nite-element applications, we assume that the
matrix has been assembled. We treat unassembled "nite-element matrices di!erently and this will
not be considered here.

In recent years, much attention has been paid to the problem of ordering symmetric sparse
systems (see, for example [1] for a discussion and list of references). One method which has been
widely used for pro"le reduction is that of Sloan [2, 3]. Sloan exploits the close relationship
between a symmetric matrix A"Ma

ij
N of order n and its undirected graph with n nodes. Two

nodes i and j are neighbours (or are adjacent) in the graph if and only if a
ij

is non-zero. Sloan's
algorithm has two distinct phases. In the "rst, a start node and an end node are chosen. In the

*Correspondence to: J. K. Reid, Computational Science and Engineering Department, Rutherford Appleton Laborat-
ory, Atlas Centre, Chilton, Didcot OX11 0QX, U.K.

CCC 0029-5981/99/241737}19$17.50 Received 9 February 1998
Copyright (1999 John Wiley & Sons, Ltd. Revised 16 November 1998

second phase, the chosen start node is numbered "rst and a list of nodes that are eligible to be
numbered next is formed. At each stage of the numbering, the list of eligible nodes comprises the
neighbours of nodes which have already been numbered and their neighbours. The next node to
be numbered is selected from the list of eligible nodes by means of a priority function. A node has
a high priority if it causes either no increase or only a small increase to the current front size and is
at a large distance from the end node.

The Harwell Subroutine Library code MC40 [4] implements the ordering algorithm of Sloan
[2] and has been in satisfactory use for a decade. We decided that a revision was needed mainly
because Kumfert and Pothen [5] have found that, for the larger problems that are handled
nowadays, there is a considerable e$ciency gain from the use of a binary heap to manage the list
of eligible nodes in the second phase of Sloan's algorithm. Another reason is for the economy of
working with supervariables (sets of variables for which the corresponding matrix columns have
identical patterns) when the number of supervariables is signi"cantly less than the number of
variables. We have added an option that permits users to provide a global priority vector because
Kumfert and Pothen have found that the "nal ordering can be signi"cantly better if we use
a hybrid algorithm that combines a spectral ordering (see, for example [6]) with the Sloan
algorithm. We have also taken the opportunity to revise the code in a number of other ways,
including adding an option for performing the Reverse Cuthill}McKee algorithm and allowing
the user to specify the weights of Sloan's algorithm. The new code is called MC60, and we also
provide a simple driver called MC61.

This paper is organized as follows. In Section 2, we brie#y review frontal and variable-band
methods. In Section 3, we look at computing start and end nodes for Sloan's algorithm. We
examine modi"cations to improve the performance of the algorithm of Gibbs et al. [7] for "nding
a pseudodiameter. We also look at using the spectral method to "nd a pseudodiameter and
consider the e!ect of interchanging the ends of the pseudodiameter on the quality of the Reverse
Cuthill}McKee algorithm. The numbering phase of Sloan's algorithm is considered in Section 4.
We discuss the priority function and compare the performance of a simple sequential search for
"nding the node of highest priority with that of a binary heap implementation. We look at the
e!ect of adjusting the weights in the priority function and of using the spectral pseudodiameter for
the start and end nodes. In Section 5, we describe a modi"ed version of the hybrid method of
Kumfert and Pothen [5]. The design of our codes MC60 and MC61 is discussed in Section 6.
Finally, a concluding discussion is given in Section 7.

To illustrate our ideas and "ndings, throughout this paper we use the test examples of Everstine
[8] and of Kumfert and Pothen [5]. It should be noted that, although the Everstine problems
have been widely used for testing algorithms of this kind, they are small by current standards.
Their order varies from 59 to 2680 and Sloan reports root-mean-square wavefronts, following his
ordering, varying from 3 to 40. The orders for the Kumfert and Pothen set vary from 6019 to
100 196 and the root-mean-square wavefronts, following Sloan's ordering, vary from 59 to 1399.

All the results presented in this paper are for Fortran 77 code compiled with the Edinburgh
Portable Compilers, Ltd (EPC) Fortran 90 compiler with optimization } O running on a
143 MHz Sun Ultra 1. All timings are in CPU seconds.

2. BACKGROUND

Two methods for solving large sparse symmetric systems of equations Ax"b that are widely
used, especially in "nite-element analysis, are the variable-band (pro"le) and frontal methods. The

1738 J. K. REID AND J. A. SCOTT

Copyright (1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 45, 1737}1755 (1999)

e$ciency of these methods is a!ected substantially by the ordering of the variables. In this section,
we brie#y discuss the parameters which measure the e$ciency of variable-band and frontal
methods.

2.1. Frontal and variable-band methods

Sloan's method aims to "nd an elimination order that is suitable for the frontal method
applied to a symmetric and positive-de"nite matrix. A variable is in the front if it has not
yet been eliminated but is adjacent to a variable that has been eliminated or is about to be
eliminated. There is an underlying assumption that full matrix storage is used for the
frontal matrix (the submatrix corresponding to the rows and columns of the front) and that no
advantage is taken of zeros within it. The order of the frontal matrix is known as the wavefront. Of
interest is

(1) the maximum wavefront, since this a!ects the in-core storage needed,
(2) the sum of the wavefronts, known as the pro,le, since this is the total storage needed for

either of the factors, and
(3) the root-mean-square wavefront, since the work performed when eliminating a variable is

proportional to the square of the current wavefront.

The elimination order is also relevant for the variable-band method. Here, instead of the
maximum wavefront, of relevance is

(1) the maximum semibandwidth, which a!ects the number of matrix rows that need to be held
in-core at once (unless we are willing to reread parts of the factors from disk).

If no advantage is taken of zeros within the band, the pro"le is of relevance because again it is the
total storage needed for either of the factors. The root-mean-square wavefront is also important
since it bears the same relationship to the work performed as for the frontal method.

2.2. The row-by-row frontal method for unsymmetric matrices

In the frontal method, the matrix A need not be assembled explicitly. Instead, the assembly and
elimination operations are interleaved with each variable being eliminated as soon as its row and
column are fully summed. If the matrix is already assembled, a frontal code may accept the matrix
row by row and treat each row as an element matrix (see, for example, [9] Section 10.6). We will
call this the row-by-row frontal method. The Harwell Subroutine Library frontal code MA42 [10]
includes such an option. In the row-by-row frontal method, a variable is eliminated when its
index appears in an index list for the entries of a row for the last time. We use the terms row front
size and column front size for the numbers of rows and columns in the rectangular frontal matrix
involved. For e$ciency, the rows need to be numbered for small row and column front sizes. Of
interest here are

(1) the maximum row and column front sizes, and
(2) the root-mean-square row and column front sizes

For the permuted matrix, if the matrix A is unsymmetric but has a symmetric sparsity pattern,
Sloan's method may be used to give an e$cient elimination order. We can then obtain a row
ordering for the row-by-row frontal method by "rst ordering all the rows that have an entry in the

ORDERING SYMMETRIC SPARSE MATRICES FOR SMALL PROFILE AND WAVEFRONT 1739

Copyright (1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 45, 1737}1755 (1999)

column of the "rst variable in the elimination order, then any remaining rows that have an entry
in the column of the second variable, and so on.

Given this row order, a row-by-row frontal code will use a very similar elimination order to
that speci"ed, but it is unlikely to be identical since several columns may become fully summed at
the same time. Usually, the sequence of numbers of rows in the front will be identical to the
sequence of wavefront sizes, but even this need not be so. It may happen that a column becomes
fully summed before its variable is reached in the speci"ed elimination order; in this case, it can be
eliminated at once the numbers of rows in the front will be less than the corresponding wavefront
sizes until the variable's position in the speci"ed elimination order is reached. For example,
consider the matrix with entries

]]]
]]]
]]

]]

and the natural elimination order 1, 2, 3, 4. Rows 1}3 are loaded into the front, then variable 1 is
eliminated. At this point, variable 3 is fully summed and can be eliminated although it has not yet
been reached in the elimination order.

3. FINDING START AND END NODES FOR SLOAN'S METHOD

In this section, we consider "nding pairs of nodes that are at maximum or nearly maximum
distance apart, since experience has shown that such nodes are good candidates for starting
nodes for pro"le and wavefront reduction algorithms and for bandwidth reduction algorithms
(see, for example, [2, 7, 11, 12]). In our discussion we assume that the matrix A is irreducible so
that its associated graph G is connected (if not, we work with each component of the graph
separately).

We "rst introduce notation that we will use throughout this paper and recall some standard
terminology and concepts from elementary graph theory (see [7]). The degree of node P3G is the
number of nodes that are adjacent to P. The distance d(P,Q) between two nodes P and Q in G is
de"ned to be the length of the shortest path connecting them (one less than the number of nodes
on the path). The diameter length of G is the greatest distance between any two nodes in G.
A diameter is a shortest path between two nodes P and Q whose distance apart is equal to the
diameter length. A pseudodiameter is either a diameter or a shortest path between two nodes in
G whose distance apart is slightly less than the diameter length. An end of a pseudodiameter is
called a pseudoperipheral node. It is convenient here to refer to pseudodiameters, but actually we
will only ever be interested in the pairs of pseudoperipheral nodes that de"ne them.

3.1. Finding a pseudodiameter using level sets

Gibbs et al. [7] "nd a pseudodiameter by constructing level-set structures. The algorithm we
propose is a modi"ed version of their procedure. The level-set structure rooted at a node P is
de"ned as the partitioning of the nodes in G into level sets ¸

1
(P), ¸

2
(P), . . . , ¸

h
(P) such that

(i) ¸
1
(P)"MPN and

1740 J. K. REID AND J. A. SCOTT

Copyright (1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 45, 1737}1755 (1999)

(ii) for i'1, ¸
i
(P) is the set of all nodes that are adjacent to nodes in ¸

i~1
(P) but are not in

¸
1
(P), ¸

2
(P), . . . , ¸

i~1
(P).

Note that all the nodes in ¸
i`1

(P) are at the distance i from P. The level-set structure rooted at
P is denoted by L (P). We refer to the number h of level sets in a level-set structure as its depth and
the greatest number of nodes in a level set as its width. Gibbs et al., choose a starting node P of
minimum degree and generate L(P). They then generate the level structures rooted at each of the
nodes in the "nal level set ¸

h
(P). If the level-set structure L (Q) rooted at such a node Q has

a greater depth than L (P), the whole process is recommenced with Q replacing P.
Constructing level-set structures for all the nodes in the "nal level set is obviously expensive.

George and Liu [13] therefore recommended terminating the construction of any level-set
structure whose width reaches or exceeds that of the narrowest level-set structure so far found.
The signi"cance of the width is that it is closely related to the wavefront of the matrix
if the level-set structure is used for ordering. Lewis [14] recommended that the nodes should
also be sorted by degree, since pseudoperipheral nodes usually have low degree. Sloan [2]
incorporated both these modi"cations into his algorithm for "nding pseudoperipheral nodes.
He also used the empirical observation that nodes with high degrees are not often selected
as potential start or end nodes to introduce a shrinking strategy that reduces the number
of nodes in the "nal level set ¸

h
for which level-set structures are generated. Sloan chose to

shrink ¸
h
by taking the "rst int(m/2)#1 nodes (sorted in ascending sequence of degree), where

int is the Fortran int function (truncation towards zero) and m is the number of nodes
in ¸

h
.

In earlier work [4], we tried the strategy of rejecting any node in ¸
h
that had a neighbour that

had already been tested, but rejected this on the grounds of its being more expensive than Sloan's
shrinking strategy. Instead, we decided to limit the search to one representative of each degree,
which we found to be signi"cantly more economical while having little e!ect on the quality of the
"nal ordering. This strategy was used in the code MC40. When publishing a Fortran implementa-
tion of his algorithm, Sloan ([3, p. 2655]) followed us, saying &this often minimizes the number of
level structures that need to be generated without a!ecting the quality of the pseudoperipheral
nodes'.

Since two nodes may have the same degree while being well separated with quite di!erent
level-set structures the strategy that we now recommend is to consider up to "ve nodes in the "nal
level set in order of increasing degree, omitting any that is a neighbour of a node already
considered. We follow George and Liu in terminating the construction of any level-set structure
whose width reaches or exceeds that of the narrowest level-set structure so far found. We will refer
to our procedure as the MGPS (modi"ed Gibbs Poole Stockmeyer) algorithm. On the Kumfert
and Pothen test matrices, we found no case where the depth was increased by using this strategy
in place of that proposed of Du! et al. [4], but for a few (notably nasasarb and onera

}
dual) the

width was signi"cantly reduced. The computation times were generally very similar. We present
in Table I the cases that showed di!erent widths. Column 3 shows the number of nodes of the
"nal level set that were considered.

Cuthill and McKee [15] proposed that the ordering associated with the level-set structure
be used as a basis for an ordering for the variable-band method and George [16] found that
there are advantages in reversing the resulting order. For an explanation of why this is so, see
[9, p. 155]. We provide this ordering as an option in our new codes MC60 and MC61 (see
Section 6). In Table I, we also present the resulting semibandwidths when the level-set structures

ORDERING SYMMETRIC SPARSE MATRICES FOR SMALL PROFILE AND WAVEFRONT 1741

Copyright (1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 45, 1737}1755 (1999)

Table I. The cases where the new pseudodiameter algorithm gave di!erent widths

Level-set
RCM semi-

Problem Code No. tries Time Depth Width bandwidth

barth5 MC40 1 0)06 103 380 394
MGPS 5 0)13 103 359 373

copter2 MC40 2 0)45 54 2226 2322
MGPS 2 0)45 54 2204 2280

nasasarb MC40 3 0)92 176 864 882
MGPS 5 1)16 176 540 577

onera
}
dual MC40 1 0)58 84 3270 3479

MGPS 2 0)58 84 2712 2768

shuttle
}
eddy MC40 4 0)07 176 236 239

MGPS 5 0)07 176 225 227

tandem
}
vtx MC40 7 0)28 30 1471 1602

MGPS 5 0)25 30 1472 1565

computed by our new strategy and by the MC40 strategy are used for the Reverse Cuthill}McKee
ordering. We refer to this as the RCM ordering.

We remark that our limit of "ve nodes in the "nal level set is somewhat arbitrary, but without
such a limit, we found that we could do signi"cantly more work without improving the quality of
the "nal result.

3.2. Interchanging the ends of the pseudodiameter

In almost all of our test problems, we found that the widths seen from the two ends of the
pseudodiameter were di!erent, sometimes by a signi"cant amount. The columns labelled Widths
MGPS in Table II show the widths from the opposite ends. If the width is important, there seems
to be no alternative to computing it from both ends and choosing as the start node the one whose
level-set structure has the lesser width. We do this in our codes MC60 and MC61. This usually
involves no overhead, but can require one more level-set structure to be constructed to "nd the
distances to the end node (we need to do this anyway whenever the most recently computed
level-set structure is not of least width, see Section 6.3).

3.3. The spectral pseudodiameter

In this section, we brie#y discuss a recent method that has been proposed for "nding
a pseudodiameter, without constructing level-set structures. Barnard et al. [6] and Paulino et al.
[17] described a spectral algorithm that associates a Laplacian matrix L with the given matrix
A with a symmetric sparsity pattern,

L"Ml
ij
N"G

!1,

0,

+
kOi

D l
ik
D ,

iOj,

iOj,

i"j

a
ij
O0

a
ij
"0

1742 J. K. REID AND J. A. SCOTT

Copyright (1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 45, 1737}1755 (1999)

Table II. Depths, widths, and RCM semibandwidths, using the MGPS and spectral orderings from both
ends of the pseudodiameter

Depths Widths RCM semibandwidths

Problem MGPS Spectral MGPS Spectral MGPS Spectral

barth 70 64 69 192 180 190 192 200 194 201 199
barth4 71 65 66 212 196 184 202 220 198 188 208
barth5 103 102 102 359 392 399 377 373 403 412 389
bcsstk30 34 32 29 2504 2639 2639 2504 2827 2814 2814 2827
commanche

}
dual 157 140 156 152 127 123 127 158 134 129 134

copter1 42 42 42 917 915 915 917 935 963 963 935
copter2 54 53 53 2204 2609 2869 2197 2280 2754 2950 2270
xnance256 56 53 52 2010 2010 2010 2010 2016 2016 2014 2014
xnance512 88 87 87 1208 1211 1211 1211 1307 1307 1319 1319
ford1 143 130 134 252 303 319 295 257 312 332 307
ford2 244 234 230 956 961 1009 939 962 986 1021 955
nassasrb 176 161 173 540 864 1068 900 577 881 1080 944
onera

}
dual 84 80 72 2712 5074 3780 3454 2768 5164 3809 3535

pds10 16 16 16 3419 3290 3419 2917 4117 3803 4117 3392
shuttle

}
eddy 176 170 176 225 167 198 167 227 177 201 177

skirt 57 57 56 1879 1776 1913 1972 2071 1994 2071 2174
tandem

}
dual 103 104 98 2139 2331 2285 2167 2206 2387 2325 2173

tandem
}
vtx 30 31 31 1472 1774 1584 1508 1565 1848 1681 1571

An eigenvector corresponding to the smallest positive eigenvalue of the Laplacian matrix is
termed a Fiedler vector. The spectral permutation of the variables is computed by sorting the
components of a Fiedler vector into monotonically non-increasing or non-decreasing order and
Barnard et al. found that this gave good pro"le sizes.

Paulino et al. [1] suggested using the "rst and last nodes of the spectral permutation to de"ne
a pseudodiameter. They take the better of the RCM orderings based on these two nodes. In Table
II, we show the depths, widths, and RCM semibandwidths that result from using the two ends of
the MGPS and spectral pseudodiameters. In our experiments, the Fiedler vector was obtained
using Chaco 2)0 [18]. We used the SymmLQ/RQI option and the input parameters were chosen
to be the same as those used by Kumfert and Pothen [5].

We remark that for the spectral pseudodiameter, if the level-set structure rooted at one end is
constructed, the other end does not necessarily lie in the "nal level set. Therefore, the depths as
well as the widths of the level-set structures rooted at each end of the pseudodiameter can di!er.
We see from our results that only for tandem

}
vtx and one end of tandem

}
dual does the spectral

pseudodiameter yield a level-set structure with a greater depth than the MGPS pseudodiameter,
but in about half the cases, it produces a narrower width and smaller RCM semibandwidth. We
highlight in bold the greatest depths, the narrowest widths, and the smallest RCM semiband-
widths. For both methods, the importance of using the end of the pseudodiameter with the
narrower level-set structure is apparent. Paulino et al. report the results of taking the better of the
two ends for the spectral method, but do not try reversing the ends for the Gibbs Poole
Stockmeyer algorithm. It is our belief that it is because of this that in their paper the spectral
method yielded slightly improved results and not because the spectral pseudodiameter is

ORDERING SYMMETRIC SPARSE MATRICES FOR SMALL PROFILE AND WAVEFRONT 1743

Copyright (1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 45, 1737}1755 (1999)

inherently superior for bandwidth reduction algorithms. In our code, we always use the end of the
pseudodiameter that yields the level-set structure with the lesser width.

3.4. ;sing the supervariable graph

For e$ciency, our new codes o!er the option of working with supervariables. A supervariable is
de"ned to be the set of variables that correspond to a set of columns of A with identical patterns.
A permutation is constructed that places the variables of each supervariable together. The
pattern of A is replaced by that of the permuted matrix represented as supervariables (that is,
by its condensed or compressed equivalent). We call this the supervariable graph and is used in
place of the graph associated with the original matrix. The potential savings in the computation
times by using the supervariable graph are illustrated by Du! et al. (see also Table VIII in
Section 7).

When a node is introduced into a level set in the original graph, all the nodes of its
supervariable will be introduced too, unless one of them is the start node. The other nodes of the
start supervariable will be in level 2 if the corresponding matrix rows have diagonal entries and in
level 3 otherwise. Thus there is no signi"cant di!erence between the properties of the variable and
supervariable graphs. The depths will be the same, except for the trivial cases where the depth is
2 or 3.

In processing the supervariable graph, we take the numbers of variables in the supervariables
into account when calculating the width of a level-set structure, but not for the degrees of the
supervariables in the list of potential start nodes. Our reasoning for these choices is that

(1) the width has a direct bearing on the wavefront or semibandwidth when the ordering is
used without alteration and calculating it is a small overhead in the loop that adds
supervariables to the level set; and

(2) the supervariable degree is likely to have greater topological relevance and, if there are
substantially fewer supervariables than variables, is signi"cantly cheaper to calculate.

4. SLOAN'S ALGORITHM

In this section, we discuss the second phase of Sloan's algorithm, that is, the numbering phase. We
will again assume that the matrix A is irreducible. It is straightforward to apply the algorithm to
each component of a reducible (block diagonal) matrix and Sloan's code (and ours) allows for this.

4.1. The Sloan priority function

In the "rst phase of his algorithm, Sloan "nds a pseudodiameter and, in the second phase, uses
this to guide his ordering. One end s of the pseudodiameter is used as the start node and the other
e is used as a target end node. In fact, Sloan ensures that the position of a variable in his ordering
is not very far away from one for which the distance from the target end node is monotonic
decreasing. He is able to improve the pro"le and wavefront by localized reordering. He begins at
the start node s and uses the priority function

P
i
"!=

1
c
i
#=

2
d (i, e) (1)

1744 J. K. REID AND J. A. SCOTT

Copyright (1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 45, 1737}1755 (1999)

for node i, where =
1

and =
2

are integer weights, c
i
(which he calls the current degree) is the

amount that the wavefront will increase if node i is numbered next, and d (i, e) is the distance to the
target end node. At each stage, the next node in the ordering is chosen from a list of eligible nodes
to maximize P

i
. Thus, a balance is kept between the aim of keeping the number of nodes in the

front small and including nodes that have been left behind (further away from the target end node
than other candidates). Based on his numerical experiments, Sloan recommends the pair (2, 1) for
the weights. Following further experiments, we also used these values in our Harwell Subroutine
Library code MC40.

If the current degree c
i
of a node drops to zero, it should be chosen as the next node to be

renumbered since eliminating the corresponding variable next is bound to reduce the size of the
front. Since testing for zero c

i
is not a big overhead, we do this in our code. This can only improve

the quality of the result, but such a node is likely to be chosen anyway if the ratio=
1
/=

2
is large

because c
i
cannot be negative.

4.2. Sloan1s search

For his list of eligible nodes, Sloan takes all nodes that are in the front (neighbours of one or
more renumbered nodes) or are neighbours of one or more nodes in the front. He performs
a simple sequential search of the list to "nd the node with highest priority that is to be numbered
next. Sloan noted that the simple search was faster than using a binary heap search for most of
Everstine's test problems [8], but suggested that the binary heap search will inevitably become
the method of choice for large problems where the root-mean-square wavefront exceeds several
hundred nodes. The recent work of Kumfert and Pothen [5] con"rms this expectation. To make
our code e$cient both on the small problems used by Sloan and the much larger problems which
are common today, we commence with code that performs Sloan's simple search, but switch to
code that uses a binary heap if the number of eligible nodes exceeds a threshold. Our experience is
that the performance is not very sensitive to this threshold. Based on our numerical experiments,
we use a threshold of 100 in our code. We show timings for six test problems in Table III, chosen
to illustrate the performance in cases that each vary from the next by a factor of about 10 in the
time taken when a simple search is used (threshold n). For small problems, our method with
threshold 100 can be slightly less e$cient than the simple search (probably because once we have
switched to the heap, we do not return to the simple search), but there are substantial gains on the
largest cases.

4.3. Managing the binary heap

We hold the list of indices of eligible nodes in any array QUEUE, with the root in QUEUE (1),
its children in QUEUE (2) and QUEUE (3) , the children of QUEUE (2) in QUEUE (4) and
QUEUE (5) , etc. Thus the parent of QUEUE (J) is always in QUEUE (J/2) . We ensure that the
priority value for a node is never more than that of its parent. As a result, the root is always the
node with the highest priority, so no search is needed to choose the next node for renumbering.

To restore the binary heap after removing the root, we move its child with greater priority into
its place, then do the same for the child, continuing until the bottom of the heap is reached. About
log

2
l steps are needed for a list of length l.

When a node is added to the list of eligible nodes, it is added to the bottom of the heap. To
ensure that the heap still has the required properties, we need to compare the value of the priority

ORDERING SYMMETRIC SPARSE MATRICES FOR SMALL PROFILE AND WAVEFRONT 1745

Copyright (1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 45, 1737}1755 (1999)

Table III. E!ect on reordering times of the threshold for using the heap

DWT 59 DWT 221 DWT869 shuttle
}
eddy tandem

}
vtx onera

}
dual

Order (n)
Threshold 59 221 869 10 429 18 454 85 567

0 0)00042 0)0028 0)015 0)16 0)53 1)7
10 0)00041 0)0028 0)015 0)16 0)53 1)7
20 0)00035 0)0028 0)016 0)16 0)53 1)7
50 0)00035 0)0026 0)015 0)16 0)53 1)7

100 0)0025 0)014 0)16 0)53 1)7
500 0)014 0)19 0)54 1)8

1000 0)19 0)64 1)8
n 0)00035 0)0024 0)014 0)19 1)51 25)4

function with that of its parent. If necessary, an interchange with the parent is made and the same
comparison is made at the parent node. This continues until the root is reached or a correctly
ordered parent and child is reached. At most log

2
l steps are needed for a list of length l.

The part of the algorithm which is potentially expensive is maintaining the priorities of the
eligible nodes as nodes are renumbered. When the value of the priority function of an eligible
node changes, it is always an increase caused by a neighbour being included in the front. We need
to compare the new value of the priority function with that of its parent as in the previous
paragraph. At most log

2
l steps are again needed, but our experience is that in most cases, no

interchanges at all are needed.

4.4. Interchanging the start and end nodes

We observed in Table I that which end of the pseudodiameter is chosen as the start node can
have a marked e!ect on the width of the level-set structure and on the RCM semibandwidth. To
a lesser extent, which end is chosen as the start node a!ects the Sloan algorithm. In Table IV, we
show the level-set widths and the Sloan pro"les for the Kumfert and Pothen test set. For each
problem, we report the results for the better of the pairs of weights (2, 1) and (16, 1) (see Section 4.5
for a discussion of the choice of weights). In column 2, we give the narrowest width and in column
4, the corresponding pro"le. We highlight the best pro"le (if the pro"les for both ends of the
pseudodiameter di!er by less than 2 per cent, both are highlighted). It can be seen that for most
problems the "nal pro"le is not very sensitive to which end is used as the start node but there
appears to be a slight advantage in choosing the pseudoperipheral node that gives the narrowest
width as the start node. We therefore take this node as the start node s in our code, since we feel
that the added expense of running the second phase of Sloan's algorithm using both nodes would
not be justi"ed.

4.5. Adjusting Sloan1s weights

As already mentioned, Sloan recommends the pair (2, 1) for the weights. However, the results of
Kumfert and Pothen [5] indicate that, for some problems, there are considerable advantages
in using other values. We have examined the pro"les for the 13 pairs of weights (1, 64), (1, 32),
(1, 16), . . . , (1, 1), (2, 1), . . . , (64, 1) on all the Everstine and Kumfert and Pothen test matrices.

1746 J. K. REID AND J. A. SCOTT

Copyright (1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 45, 1737}1755 (1999)

Table IV. MGPS widths and Sloan pro"les (in millions) for
the two pseudoperipheral nodes

MGPS Sloan
Problem widths pro"les

barth 180 192 0.47 0.47
barth4 196 212 0.33 0.34
barth5 359 392 1.44 1)49
bcsstk30 1208 1211 16)15 11.16
commanche

}
dual 127 152 0.33 0.33

copter1 915 917 6.05 6.05
copter2 2204 2609 37.96 38)87
,nance256 2012 2012 6.35 6.35
,nance512 2504 2639 11.91 11.94
ford1 252 303 2.35 2)61
ford2 956 961 41.05 41.66
nasasrb 540 864 19.01 18.63
onera

}
dual 2712 5074 87.75 103)41

pds10 3290 3419 9.36 12)53
shuttle

}
eddy 167 225 0)62 0.59

skirt 1776 1879 36)60 34.16
tandem

}
dual 2139 2331 66.21 72)98

tandem
}
vtx 1472 1774 5.72 5.75

Table V. Percentage increases in pro"les for di!erent weights

Weights barth5 copter2 onera
}
dual ,nance512 ford1 skirt

(1, 64) 100)3 53)5 55)0 32)1 10)9 23)0
(1, 32) 100)3 53)5 55)0 32)0 10)9 23)0
(1, 16) 100)3 53)7 55)0 32)1 10)9 22)6
(1, 8) 100)3 53)4 55)0 32)0 10)7 13)4
(1, 4) 100)4 51)3 55)0 30)6 9)8 2)7
(1, 2) 99)1 41)7 52)2 16)1 7)7 0)0
(1, 1) 88)5 26)4 41)7 7)4 4)2 3)3
(2, 1) 73)5 13)7 27)8 1)2 0)0 16)1
(4, 1) 47)8 7)5 12)2 0)0 0)9 46)4
(8, 1) 14)8 5)8 1)6 44)9 8)5 80)6
(16, 1) 1)5 0)0 0)0 318)0 10)3 130)7
(32, 1) 0)0 0)9 0)3 796)9 24)6 131)6
(64, 1) 0)0 0)9 0)3 954)4 25)8 131)7

Some examples illustrating our "ndings are shown in Table V, where percentage increases from
the best value are shown. In both test sets, there are cases for which the pro"le rises rapidly for
large values of=

1
/=

2
. Kumfert and Pothen call these problems class two and the rest class one.

The "rst three examples in Table V are class-one problems and the rest are class-two problems.
The examples barth5 and ,nance512 were used by Kumfert and Pothen to exemplify classes one
and two, respectively. We see from the table that, for class-one problems, it may be important

ORDERING SYMMETRIC SPARSE MATRICES FOR SMALL PROFILE AND WAVEFRONT 1747

Copyright (1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 45, 1737}1755 (1999)

to choose a large value of=
1
/=

2
. For class-two problems, (1, 1) or Sloan's choice of (2, 1) both

seem reasonable. Our results for the whole test set show that using the weights (2, 1) rarely gives
pro"les for class-two problems that are more than 5 per cent bigger than the best of those we
computed. From the Kumfert and Pothen test set, the class-two problem for which the Sloan
choice gave the worst result was skirt. Results for this problem are given in the "nal column of
Table V. For class-one problems, it seems to be rarely advantageous to go beyond a ratio of 16,
and can be slightly disadvantageous. Kumfert and Pothen have no suggestion for predicting to
which class a problem belongs. It seems to us that, if the class of problem is not known, it is
necessary to try more than one pair of weights. To allow for this, in our code MC60 the weights
are input parameters which must be set by the user. The default option in the driver MC61 is to
compute orderings for pairs (2, 1) and (16, 1) and to choose the one with the smallest pro"le.
MC61 also allows the user to specify other choices for the weights.

Both Sloan and Kumfert and Pothen use an integer priority function, but this seems to us to be
an unnecessary restriction. We use real values, which have the same storage requirement in the
usual case of 4-byte integers and 4-byte reals. We found that there was an increase in execution
time, but it was very slight. Using reals means that no tests are needed to ensure that integer
over#ow does not occur.

Sloan's algorithm will generally avoid very large semibandwidths simply because of not
departing far from the underlying rooted level-set structure ordering, but this may give an
ordering that is not satisfactory for an out-of-core variable-band solver. One possibility is to
increase the weight =

1
, but the direct use of the Reverse Cuthill}McKee order is likely to be

better from this point of view.

4.6. Other adjustments of the priority function

Kumfert and Pothen [5] point out that the current degree c
i
varies between 0 and *#1, where

* is the maximum degree of a node, while d(i, e) varies between 0 and h, the level-set depth. They
therefore suggests replacing (1) by the priority function

P
i
"!=

1
int(h/*)c

i
#=

2
d (i, e) (2)

Our feeling is that it is inappropriate to take the depth into account. What matters is the local
nature of the graph and, for the second term in P

i
, it is to which level sets the candidate nodes

belong. This varies by one from each level set to the next so is already properly normalized.
Using (2), we have examined the pro"le sizes for the 13 pairs of weights used in the previous

section on all the Everstine and Kumfert and Pothen test matrices without seeing any evidence
that normalization is needed. Therefore, we do not use (2) in our implementation of Sloan's
algorithm.

Strictly speaking, equations (1) and (2) do not de"ne the priority function fully since we give
maximum, priority to a node with c

i
"0. Thus the priority function is really non-linear in c

i
.

Nick Gould suggests (Private Communication) that further non-linearity might be helpful, but we
have not investigated this.

4.7. Other start and end nodes

Recall from Section 3.3 that Paulino et al. suggested using the spectral method to "nd
a pseudodiameter and then using the better of the RCM orderings based on the two ends of this

1748 J. K. REID AND J. A. SCOTT

Copyright (1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 45, 1737}1755 (1999)

Table VI. Pro"les (in millions) with di!erent algorithms

Sloan Sloan Sloan Hybrid Hybrid
Problem MC40 MGPS spectral perm. vector Spectral

barth 0.49 0.47 0.48 0.40 0.40 0.46
barth4 0.45 0.33 0.37 0.29 0.29 0.33
barth5 2.43 1.44 1.48 1.29 1.29 1.42
bcsstk30 15.72 16.15 14.86 7.88 8.20 9.14
commanche

}
dual 0.44 0.33 0.34 0.35 0.35 0.35

copter1 7.09 6.05 6.05 6.11 6.11 7.61
copter2 43.24 37.96 35.28 32.78 32.78 42.00
,nance256 6.57 6.35 6.51 6.44 6.70 9.17
,nance512 12.22 11.91 14.25 11.72 11.41 19.13
ford1 2.34 2.35 2.74 1.95 1.88 2.17
ford2 40.63 41.05 41.78 35.97 35.64 40.30
nasasrb 18.35 19.01 19.38 19.30 19.21 25.10
onera

}
dual 113.67 87.75 81.88 46.67 46.66 53.39

pds10 13.68 9.36 9.87 8.81 8.89 16.06
shuttle

}
eddy 0.59 0.62 0.62 0.59 0.59 0.76

skirt 34.12 36.60 33.38 27.87 29.26 30.51
tandem

}
dual 87.79 66.21 79.85 42.22 42.22 48.38

tandem
}
vtx 6.29 5.72 5.46 5.22 5.22 6.19

pseudodiameter. We can also use the spectral pseudodiameter to give start and target end nodes
(s, e) for the numbering phase of Sloan's method. We again choose the start node to be the end of
the pseudodiameter which gives the narrowest level-set structure. This is not a big overhead as it
just requires one more level-set structure to be constructed. We found the overall quality of the
results to be very similar to those obtained using the MGPS pseudodiameter*spectral start and
end nodes were better on some problems and worse on others. This is illustrated by the results
presented in column &Sloan Spectral' of Table VI.

5. THE HYBRID METHOD

Kumfert and Pothen [5] observed that spectral orderings do well in a global sense but often do
poorly locally. They therefore proposed using the spectral method to provide a global ordering to
guide Sloan's method. Their results showed that this can yield a much better "nal ordering than
using either the spectral method alone or Sloan's method with the rooted level-set structure
ordering. Kumfert and Pothen propose the priority function

P
i
"!=

1
int(n/*)c

i
#=

2
d (i, e)!=

3
p
i

(3)

where p
i
is the position of node i in the spectral ordering and call this the hybrid method. The

normalization has been changed to balance the maximum values of the factors for=
1

and the
new=

3
. They use the spectral pseudodiameter to "nd the end node e and leave the distance d (i, e)

unnormalized, which gives the second term in (3) only a small in#uence. Although in their paper
they report that choosing=

2
to be equal to one generally does signi"cantly better than setting

=
2

to zero, they later say (Private Communication) that they regret including this term.

ORDERING SYMMETRIC SPARSE MATRICES FOR SMALL PROFILE AND WAVEFRONT 1749

Copyright (1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 45, 1737}1755 (1999)

To make the normalization similar to that of the priority function (1), in place of (3) we have
chosen to use the priority function

P
i
"!=

1
c
i
!=

2
(h/n)p

i
(4)

where h is the level-set depth. This makes the factor for=
2

vary up to h, as in (1). Our results
are summarized in the column &Hybrid perm.' of Table VI. For some problems, including
tandem

}
dual and onera

}
dual, we found a signi"cant improvement by using the whole spectral

order as a guide for Sloan's method. It appears that the spectral ordering of the interior nodes is
important. We see no possible justi"cation for using both the level-set order and the spectral
order to guide the Sloan algorithm and our results are comparable with those reported by
Kumfert and Pothen. We again tried a range of values for=

1
and=

2
. For class-two problems,

we found that a value of =
1
/=

2
that was smaller than that used by Sloan was advantageous.

Based on our numerical experiments, for the hybrid method for this class, we recommend using
the weights (1, 2) rather than (2, 1). In Table VI, for the hybrid method we take the better of the
results for the weights (1, 2) and (16, 1). In general, the best weight for p

i
must depend on the

quality of the permutation and the higher weight that we have found useful with the spectral
order indicates that it is of good quality.

For the hybrid method, we again experimented with interchanging the ends of the pseudodiameter.
We constructed the level-set structures rooted at the two ends and selected as the starting node
the one with the narrowest level structure. We found that for some problems this gave a reduction
in the pro"le but for other problems, it gave an increase. We do not think the di!erences in the
pro"le are large enough to justify the expense of running the Sloan algorithm from both nodes so
in our code we use only one.

We have also tried using the Fiedler vector from the spectral method directly, again adjusting
the normalization so that the factor for=

2
in (4) varies up to the depth h. We found (see column

&Hybrid vector' of Table VI) that overall this did not signi"cantly improve the quality of the
results. We also show in Table VI (column &Spectral') the pro"les for the spectral ordering.
A comparison of columns 5 and 7 demonstrate that it is worthwhile to use Sloan's method to
re"ne the spectral ordering.

In Table VI, we highlight in bold the smallest pro"le for each problem and any within 2 per cent
of the smallest. We also show MC40 pro"les for these problems. Note that tie-breaking can a!ect
all these results so that too much notice should not be taken of small di!erences. For example,
MC40 gives slightly better pro"les than Sloan MGPS on six problems but generally its results are
less good because it uses only the weights (2, 1).

The hybrid method was intended for very large problems, but we felt that it would be of interest
to see how it performs on some of the Everstine problems, since these have been widely used as
a test set and very good pro"les have been obtained for them by Armstrong [19] using simulated
annealing (which would not be suitable for everyday software). In Table VII, we compare
Armstrong's pro"les with those obtained with the hybrid method and with the Sloan MGPS
method. On this size of problem, there seems to be a little advantage in using the hybrid
algorithm; the pro"les are within 2 per cent of each other in "ve cases, and each is signi"cantly
better than the other in two cases. In one case, however, the hybrid pro"le is less than
Armstrong's.

We remark that although we have only used the spectral ordering in the hybrid algorithm, any
input ordering can be used. Our codes are written to allow this.

1750 J. K. REID AND J. A. SCOTT

Copyright (1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 45, 1737}1755 (1999)

Table VII. Pro"les (in thousands) for the three
algorithms on the nine largest Everstine problems

Sloan Hybrid
n MGPS perm. Armstrong

758 7)3 7)5 7)1
869 13)9 15)7 13)2
878 19)4 19)2 17)8
918 17)0 17)3 15)9
992 33)5 33)4 32)5

1005 34)7 30)8 32)5
1007 22)7 20)4 19)9
1242 36)5 39)8 33)1
2680 89)7 91)4 84)9

6. SOFTWARE DESIGN

In this section, we discuss the design of new codes for reordering sparse symmetric matrices. Our
new subroutines are named according to the naming convention of the Harwell Subroutine
Library [20]. The codes themselves are available; please contact one of the authors for details of
price and conditions of use.

Our previous code MC40 provided the user with a single subroutine. It accepted the strictly
lower triangular part of the matrix and returned the permutation and the values of the pro"les for
the original and permuted orderings. While the design of our new software includes a simple
driver, MC61, we have decided that it is very worthwhile to give the user the greatest possible
#exibility so in the MC60 package we provide user entries to the component parts of the
reordering algorithm. These are described in the following subsections.

6.1. MC60A

MC60A accepts the pattern of the lower-triangular part of the matrix A and constructs the
pattern of the whole matrix. Each is held by columns, with pointers to the column starts. For
economy of storage, the work is done in place. A "rst pass looks for any out-of-range or repeated
indices and removes them, or terminates if this has been requested. A second pass counts the
number of entries that need to be added to each row to include the upper triangle. A third pass
works through the rows in reverse order, moving them back to allow space for the additional
entries. A "nal pass inserts the additional entries. There are extensive checks on the data. If the
user already has the pattern of the whole matrix and does not wish checks to be made on the data,
MC60A is not needed.

6.2. MC60B

MC60B constructs supervariables, given the pattern of the whole matrix. This is done in
O(n#q) time, where n is the order of the matrix and q is the number of entries, by working

ORDERING SYMMETRIC SPARSE MATRICES FOR SMALL PROFILE AND WAVEFRONT 1751

Copyright (1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 45, 1737}1755 (1999)

progressively so that after j steps we have the supervariable structure for the submatrix of the "rst
j columns. We start with all variables in one supervariable (for the submatrix with no columns),
then split it into two according to which rows do or do not have an entry in column 1, then split
these according to the entries in column 2, etc. The splitting is done by moving the variables one
at a time to the new supervariable. Further details are given by Du! and Reid [21].

Note that this strategy requires the user to provide the indices of the entries on the diagonal
since these a!ect whether the structures of columns are identical. This contrasts with MC40,
which assumes that the diagonal entries are all non-zero.

Unless all the supervariables consists of a single variable, we now compress the pattern. This is
held in the form of the index list for column 1, followed by the index list for column 2, etc. with
pointers to column starts. In order that this compression can be performed in place, we identify
for each supervariable the member variable with least index as its key variable. This permits us to
visit the supervariables in the order of their key variables, picking up the index list of that
variable, using it to construct the supervariable index list, and placing the constructed list in its
"nal position without fear of overwriting any information needed later. Note that the supervari-
able pattern and the map of variable to supervariable indices provides a complete representation
of the original pattern. For e$ciency, we also hold an array of numbers of variables in
supervariables.

The use of MC60B is optional. If it is known that there are few supervariables, MC60B will not
be needed. On the other hand, MC60B may be used in combination with another algorithm for
choosing an ordering.

6.3. MC60C

MC60C controls the main part of the algorithm. It works with the supervariable graph
(Section 3.4) and returns a supervariable permutation. It allows for the matrix being reducible
(a permutation of a block diagonal matrix). In this case, each diagonal block of the permuted
matrix will correspond to a component of the graph (set of nodes with no connections to other
nodes). It orders any trivial components "rst by choosing any nodes that have degree zero. It then
orders each non-trivial component in turn by calling other subroutines, which allows these other
subroutines to work with a single component.

The user has to choose whether Sloan's algorithm or RCM is required for each component. For
Sloan's algorithm, the user may specify a global priority vector whose components p

i
are used in

the priority function (4). This will normally come from a spectral ordering, but is not restricted to
this. Apart from this case, a pseudodiameter must be found.

By default, MC60C calls MC60H to compute a pseudodiameter, as explained in Section 3.1.
MC60H also distinguishes between the ends, as explained in Section 3.2. Alternatively, the user may
specify the two end nodes. In either case, the level-set structure rooted on the end node is needed to
provide distances to the end node in Sloan's method and the ordering itself for the RCM method.
This is always returned by MC60H; if the end nodes are speci"ed, the level-set structure is computed
by calling MC60L directly from MC60C (MC60L is also called from MC60H).

It is this need for the level-set structure that leads to the choice of end node possibly adding an
overhead (see Section 3.2). If we do not mind which end is used and if the most recent level-set
structure was constructed in full (the construction is terminated early if its width is found to be
greater than the narrowest encountered so far, see Section 3.1), a "nal call of MC60L is not
needed.

1752 J. K. REID AND J. A. SCOTT

Copyright (1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 45, 1737}1755 (1999)

If Sloan's method is required, this is performed by MC60J, using weights=
1

and=
2

supplied
by the user and switching from a simple search to using a binary heap if the front gets large (see
Section 4.2). If RCM is required, we have only to reverse the order that we already have.

6.4. MC60D, MC60E, MC60F, and MC60G

MC60D, MC60E, MC60F, and MC60G are simple utilities that convert the supervariable
ordering to an ordering for variables or rows, or provide statistics.

MC60D constructs the permutation for the variables that corresponds to a given permutation
for the supervariables.

MC60E uses a given permutation for the supervariables to construct the corresponding
ordering for the rows, as required by a row-by-row frontal solver such as MA42 (equation entry).

MC60F uses a given permutation for the supervariables to compute the pro"le, the maximum
wavefront, the semibandwidth, and the root-mean-square wavefront for the permuted matrix.

MC60G uses a given row order to compute the maximum row and column front sizes and the
root-mean-square row and column front sizes for a row-by-row frontal method.

6.5. The driver MC61

For our driver MC61, there are just two entries. The subroutine MC61I must be called to
provide default values for the parameters that control the execution of the package. If the user
wishes to use values other than the defaults, the corresponding parameters should be reset after
the call to MC61I. MC61A accepts the pattern of the lower-triangular part of A, performs full
checks on the data, and either

(1) chooses a permutation of the variables that aims to reduce the pro"le and wavefront of the
matrix,

(2) chooses a permutation of the variables that aims to reduce the bandwidth of the matrix, or
(3) constructs an ordering for the rows that is e$cient when used with a row-by-row frontal

solver.

Although MC61 has a user interface which is similar to that of MC40, it provides a much wider
range of options. The user may choose whether or not to use supervariables. The user may also
specify the weights for the Sloan priority function (1) and can optionally supply the vector Mp

i
N

and weights for the hybrid priority function (3).

7. CONCLUDING DISCUSSION

In this paper, we have discussed the design and development of a software package, MC60, for
computing a symmetric permutation to reduce the pro"le and wavefront of a large sparse matrix
with a symmetric sparsity pattern. The driver MC61 provides the user with a straightforward
interface to MC60. In the next release (HSL 2000) of the Harwell Subroutine Library, MC61 will
supersede MC40.

As we discussed in Section 4.5, if Sloan's algorithm (combined with the MGPS algorithm for
"nding a pseudodiameter) is selected, we recommend computing pro"les for the pairs of weights
(2, 1) and (16, 1) and taking the best. This is the default option in MC61. Although the

ORDERING SYMMETRIC SPARSE MATRICES FOR SMALL PROFILE AND WAVEFRONT 1753

Copyright (1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 45, 1737}1755 (1999)

Table VIII. Timings for MC40 and MC61. Nsup denotes the number of supervariables
Var. indicates that variables are used, Svar. indicates that supervariables are used

MC61
One pair Two pairs
weights weights

Problem Order Nsup MC40 Var. Svar. Var. Svar.

barth 6691 6691 0)17 0)18 0)21 0)28 0)31
barth4 6019 6019 0)12 0)15 0)14 0)21 0)24
barth5 15 606 15 606 0)56 0)45 0)52 0)71 0)78
bcsstk30 28 924 9289 6)29 3)82 1)91 6)40 2)28
commanche

}
dual 7920 7920 0)13 0)13 0)16 0)22 0)24

copter1 17 222 17 222 1)44 0)57 0)70 0)99 1)09
copter2 55 476 55 476 11)55 2)39 2)80 4)12 4)52
,nance256 37 376 37 376 1)93 1)10 1)29 1)85 2)04
,nance512 74 752 74 752 3)41 2)12 2)50 3)57 3)95
ford1 18 728 18 210 0)60 0)38 0)44 0)65 0)69
ford2 100 196 97 906 8)68 2)63 2)92 4)39 4)60
nasasrb 54 870 24 954 4)59 5)05 2)99 8)51 3)85
onera

}
dual 85 567 85 567 21)83 2)50 2)84 4)16 4)51

pds10 16 558 16 558 5)40 0)56 0)65 0)92 1)02
shuttle

}
eddy 10 429 10 363 0)22 0)30 0)35 0)47 0)53

skirt 45 361 14 956 8)97 4)83 2)58 8)20 3)17
tandem

}
dual 94 069 94 069 16)96 2)57 2)90 4)12 4)51

tandem
}
vtx 18 454 18 454 1)33 0)81 0)94 1)27 1)40

pseudodiameter does not need to be recomputed, the use of two pairs of weights does represent
an overhead. To illustrate this and to compare the e$ciency of the old and new ordering codes,
in Table VIII we report timings for MC40 and MC61 for the Kumfert and Pothen test
examples. For MC61 we show times for a single pair of weights and for two pairs of weights,
using variables and using supervariables. The results in column 8 are those for the default MC61
parameters.

Kumfert and Pothen report that the hybrid method is more than six times more expensive than
the Sloan method. In this study we do not include timings for the hybrid method because the
Chaco package that we use to "nd the Fiedler vector is written in C and we do not currently have
a Fortran code within the Harwell Subroutine Library for computing the Fiedler vector.

As anticipated, for the larger problems, using the binary heap gives signi"cant savings so that,
for these problems, MC61 with two pairs of weights is still generally faster than MC40. For the
smaller problems, MC61 can be slower than MC40, but the quality of the MC61 ordering is
usually superior. Only three of the test problems, skirt, nasarb, and bcsstk30, have signi"cantly
fewer supervariables than variables (highlighted in bold). For these problems, we see there is
a substantial saving in the execution times when supervariables are used. For the other problems,
searching for supervariables increases the reordering time but the increase is generally limited to
about 15 per cent for a single pair of weights and about 10 per cent for two pairs. We therefore
recommend that, unless the user knows his or her problem does not compress well, supervariables
with two pairs of weights should be used, and this is the default in MC61.

1754 J. K. REID AND J. A. SCOTT

Copyright (1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 45, 1737}1755 (1999)

ACKNOWLEDGEMENTS

We are grateful to Gary Kumfert and Alex Pothen of Old Dominion University and to Scott
Sloan of the University of Newcastle, New South Wales for helpful discussions. We would like to
thank Gary Kumfert for providing us with the test examples used in this paper. Finally, we would
like to thank Scott Sloan, Alex Pothen, and our colleagues Iain Du! and Nick Gould for their
helpful comments on drafts of this paper.

REFERENCES

1. Paulino GH, Menezes IFM, Gattass M, Mukherjee S. A new algorithm for "nding a pseudoperipheral vertex, or the
endpoints of a pseudodiameter in a graph. Communications in Numerical Methods in Engineering 1994; 10:913}926.

2. Sloan SW. An algorithm for pro"le and wavefront reduction of sparse materials. International Journal for Numerical
Methods in Engineering 1986; 23:239}251.

3. Sloan SW. A Fortran program for pro"le and wavefront reduction. International Journal for Numerical Methods in
Engineering 1989; 28:2651}2679.

4. Du! IS, Reid JK, Scott JA. The use of pro"le reduction algorithms with a frontal code. International Journal for
Numerical Methods in Engineering 1989; 28:2555}2568.

5. Kumfert G, Pothen A. Two improved algorithms for envelope and wavefront reduction. BI¹ 1997; 18:559}590.
6. Barnard ST, Pothen A, Simon H. A spectral algorithm for envelope reduction of sparse matrices. Numerical ¸inear

Algebra with Applications 1995; 2:317}334.
7. Gibbs, NE, Poole WG, Jr, Stockmeyer PK. An algorithm for reducing the bandwidth and pro"le of a sparse matrix.

SIAM Journal for Numerical Analysis 1976; 13:236}250.
8. Everstine GC. A comparison of three resequencing algorithms for the reduction of matrix pro"le and wavefront.

International Journal for Numerical Methods in Engineering 1979; 14:837}853.
9. Du! IS, Erisman AM, Reid JK. Direct Methods for Sparse Matrices. Oxford University Press: London, 1986.

10. Du! IS, Scott JA. The design of a new frontal code for solving sparse, unsymmetric systems. ACM ¹ransactions on
Mathematical Software 1996; 22:30}45.

11. Gibbs NE. A hybrid pro"le reduction algorithm. ACM ¹ransactions on Mathematical Software 1976; 2:378}387.
12. Sloan SW, Randolph MF. Automatic element reordering for "nite element analysis with frontal solution schemes.

International Journal for Numerical Methods in Engineering 1983; 19:1153}1181.
13. George A, Liu JWH. An implementation of a pseudoperipheral node "nder. ACM ¹ransactions on Mathematical

Software 1979; 5:284}295.
14. Lewis JG. Implementation of the Gibbs}Poole}Stockmeyer and Gibbs}King algorithms. ACM ¹ransactions on

Mathematical Software 1982; 8:180}189 and 190}194.
15. Cuthill E, McKee J. Reducing the bandwidth of sparse symmetric matrices. Proceedings 24th National Conference of

the Association for Computing Machinery, Brandon Press: NJ, 1969; 157}172.
16. George A. Computer implementation of the "nite-element method. Report S¹AN CS-71-208, Ph.D. ¹hesis, Depart-

ment of Computer Science, Stanford University, Stanford, CA, 1971.
17. Paulino GH, Menezes IFM, Gattass M, Mukherjee S. Node and element resequencing using the Laplacian of a "nite

element graph: parts I and II. International Journal for Numerical Methods in Engineering 1994; 37:1511}1555.
18. Hendrickson B, Leland R. The Chaco user's guide: Version 2.0, ¹echnical Report SAND94-2692, Sandia National

Laboratories, Albuquerque, NM, 1995.
19. Armstrong BA. Near-minimal matrix pro"les and wavefronts for testing nodal resequencing algorithms. International

Journal for Numerical Methods in Engineering 1985; 21:1785}1790.
20. HSL. Harwell Subroutine ¸ibrary Catalogue (Release 12). AEA Technology: Harwell, 1995.
21. Du! IS, Reid JK. Exploiting zeros on the diagonal in the direct solution of inde"nite sparse symmetric linear systems.

ACM ¹ransactions on Mathematical Software 1996; 22:227}257.

ORDERING SYMMETRIC SPARSE MATRICES FOR SMALL PROFILE AND WAVEFRONT 1755

Copyright (1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 45, 1737}1755 (1999)

