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Reversing the row order for the row-by-row frontal method
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SUMMARY

The e�ciency of the row-by-row frontal method for the solution of unsymmetric sparse linear systems
of equations is dependent on the row ordering used. Numerical experience has shown us that it can
be advantageous to reverse a given row ordering. We present two results on invariances under the
reversal of the ordering and use real applications to illustrate the variations that can take place upon
row reversal. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The row-by-row frontal method (see, for example, Du�, Erisman and Reid [1, Section 10.6])
solves a large sparse unsymmetric set of n linear equations by Gaussian elimination with the
help of a full rectangular matrix that is held in memory and is known as the frontal matrix.
The size of the frontal matrix varies during the elimination. Rows are assembled (added) into
the frontal matrix one by one. Whenever a column becomes fully summed, that is, the last
row in which it has an entry is assembled, a pivot is chosen in the column and is used to
eliminate the column and the row containing the pivot. The eliminated row and column are
stored for use in the back-substitution or in the solution of further systems of equations.
Since an elimination can only take place after a column becomes fully summed, the order

in which the rows are assembled will determine both how long a variable remains in the front
and the order in which the variables are eliminated (apart from the order among columns that
become fully summed at the same assembly step, which has no e�ect on the computational
requirements). For e�ciency, in terms of both storage and arithmetic operations, the rows need
to be assembled in an order that keeps the size of the frontal matrix as small as possible. Scott
[2] has considered a number of strategies for determining such an ordering and has found that
the results of using the di�erent orderings on practical problems can vary enormously. While
developing row ordering software for HSL 2000 [3], Scott tried experimenting with reversing
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any given row order. She found that this makes no di�erence to some of the usual measures
of the quality of the ordering but it can make enormous changes to others.
These numerical results motivated us to prove the results on invariances under the reversal

of the ordering that we present in Section 2. Theorem 2.1 is straightforward and unsurprising.
Theorem 2.2 took us by surprise. We began by seeking a counter-example by computer.
Finding none, we sought a proof, the honed version of which we present here. In Section 3,
we illustrate the variations that can take place in real applications.

2. TWO THEOREMS ON INVARIANCE

We follow Scott [2] and use the terms row frontsize and column frontsize for the number of
rows and columns in the front. Our invariance results pertain to the column frontsizes.
The row and column frontsizes after assembly refer to the frontsizes after a row has been

added to the front. When a row is added, more than one column may become fully summed;
for each such column, a pivot is chosen and an elimination is performed. The row and column
frontsizes before elimination refer to the frontsizes immediately prior to an elimination. The
frontal matrix size refers to the product of the row and column frontsizes.
We use the term forward row order to refer to the row ordering 1; 2; : : : ; n (that is, to the

given ordering), while the reverse ordering is n; n − 1; : : : ; 1. We assume that the matrix (in
the forward order) is A = {aij} and that a reference to ‘row i’ refers to the row ai•.
Before presenting our results, we introduce a small illustrative example for which the matrix

(with row numbers added) in the forward and reverse orders is
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The frontal matrix sizes after each assembly and elimination operation for the forward and
reverse orderings are as follows:

Forward order Reverse order

Assemble row 1 1× 1 Assemble row 5 1× 2
Assemble row 2 2× 4 Eliminate column 5 0× 1
Assemble row 3 3× 4 Assemble row 4 1× 2
Eliminate column 3 2× 3 Assemble row 3 2× 4
Eliminate column 1 1× 2 Assemble row 2 3× 4
Assemble row 4 2× 2 Eliminate column 4 2× 3
Eliminate column 4 1× 1 Eliminate column 3 1× 2
Assemble row 5 2× 2 Eliminate column 2 0× 1
Eliminate column 5 1× 1 Assemble row 1 1× 1
Eliminate column 2 0× 0 Eliminate column 1 0× 0
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Thus, the row frontsize, column frontsize, and the frontal matrix size before each of the �ve
eliminations together with their mean values are

before elimination of column 3 1 4 5 2
row frontsize 3 2 2 2 1 2.0

column frontsize 4 3 2 2 1 2.4
frontal matrix size 12 6 4 4 1 5.4

When the order is reversed, the corresponding statistics are

before elimination of column 5 4 3 2 1
row frontsize 1 3 2 1 1 1.6

column frontsize 2 4 3 2 1 2.4
frontal matrix size 2 12 6 2 1 4.6

Our �rst result is about the column frontsize after each assembly. This is important since
the size of the frontal matrix after assembly determines how much memory is needed by the
frontal solver.

Theorem 2.1. If a given row order is reversed; the sequence of n column frontsizes after
the assemblies is reversed.

Proof
After assembly of row i, in the forward or reverse row order, the column frontsize is the
number of columns with �rst entry at row i or earlier and last entry at row i or later, that is,
the number of columns j for which

min{k: akj 6=0}6 i and max{k: akj 6=0}¿ i:
Corollary 2.1. The maximum column frontsize is invariant.

Corollary 2.2. The mean column frontsize after assembly is invariant.

Corollary 2.3. The sum of the column frontsizes after assembly is invariant.

Note that the sum of the column frontsizes after assembly is equal to the sum of the
lifetimes, where the lifetime of a variable is de�ned to be the number of assembly steps for
which the variable is in the front. The lifetime of variable j is also the length of column j,
that is, max{k: akj 6=0} −min{k: akj 6=0}. The sum of the lifetimes is used by Camarda [4]
to compare the quality of di�erent row orderings.
Our second result concerns the column frontsize before each elimination. This is important

since the row and column frontsizes before an elimination determine how much work is
associated with the elimination and how much storage is required for the pivotal column and
row.

Theorem 2.2. If a given row order is reversed; the sequence of n column frontsizes before
the eliminations is permuted.
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Proof
At assembly step i in the forward order, the column frontsize increases by one for each
column with its �rst entry in row i, that is, each j such that min{k: akj 6=0}= i. Following
this, it decreases by one for each column with its last entry in row i, that is, each j such that
max{k: akj 6=0}= i, as that column is eliminated. There are n occasions when it increases
by one and n occasions when it decreases by one. These 2n events begin and end with the
column frontsize of zero. For each increase from f − 1 to f there is a corresponding later
decrease from f to f − 1, and to establish a one-one correspondence, we take the �rst such
decrease if there is more than one. Each decrease corresponds to an elimination with column
frontsize f using the forward row order. Each increase corresponds to an elimination with
column frontsize f using the reverse row order. The result follows.
For the forward order on our small example, the sequence of column frontsizes used in

this proof is 0; 1; 2; 3; 4; 3; 2; 1; 2; 1; 0. Note that there are two increases from 1 to 2 and two
decreases from 2 to 1; the �rst increase is taken to correspond with the �rst decrease and the
second increase to correspond with the second decrease.

Corollary 2.4. The mean column frontsize before elimination is invariant.

Note that the mean values in Corollaries 2.2 and 2.4 usually di�er, while there is only one
maximum value. For the forward order on our small example, the mean column frontsizes
after assembly and before elimination are 2.6 and 2.4, respectively.

3. NUMERICAL EXPERIENCE

We now present some numerical results that illustrate our theoretical results. All the frontsizes
quoted in this section are frontsizes before elimination. The test problems are those used by
Scott [2]; a brief description of each problem is given in Table I. The problems all arise from
real engineering or industrial applications. Our numerical results illustrating the e�ects of

Table I. The test problems.

Identi�er Order Number of entries Description=discipline

bayer04 20545 159082 Chemical process simulation
bayer09 3083 21216 Chemical process simulation
bp1600 1600 4841 Basis matrix from LP problem
extr1 2837 11407 Dynamic simulation problem
gre1107 1107 5664 Simulation studies in computer systems
hydr1 5308 23752 Dynamic simulation problem
lhr07c 7337 156508 Light hydrocarbon recovery
lhr14c 14270 307858 Light hydrocarbon recovery
meg1 2904 58142 Chemical process simulation
onetone2 36057 227628 Harmonic balance method, one-tone
orani678 2529 90158 Economic model
rdist1 4134 94408 Reactive distillation problem
west2021 2021 7353 Chemical engineering
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Table II. The maximum (max) and mean row and column frontsizes before elimination for the
forward and reverse row ordering.

Identi�er Forward Reverse

Max Max Mean Mean Max Max Mean Mean
row col. row col. row col. row col.

bayer04 349 501 174 275 263 501 105 275
bayer09 83 153 38 62 78 153 26 62
bp1600 242 324 91 142 143 324 32 142
extr1 32 46 15 27 21 46 13 27
gre1107 95 208 55 125 123 208 72 125
hydr1 45 86 22 43 42 86 22 43
lhr07c 169 225 51 111 127 225 66 111
lhr14c 164 366 69 188 255 366 125 188
meg1 700 1150 368 639 517 1150 235 639
onetone2 297 658 198 405 365 658 209 405
orani678 1333 1576 604 771 320 1576 70 771
rdist1 40 81 28 60 49 81 32 60
west2021 38 52 18 29 22 52 12 29

Table III. The maximum and mean frontal matrix size and the sum of lifetimes (∗103) for the
forward and reverse row ordering.

Identi�er Forward Reverse

Max Mean Sum Max Mean Sum
frontal frontal of frontal frontal of
matrix matrix lifetimes matrix matrix lifetimes
size size size size

bayer04 17365 5341 5708 12387 3340 5708
bayer09 1237 283 194 1193 197 194
bp1600 6607 1833 100 4633 659 100
extr1 147 43 76 84 37 76
gre1107 1925 814 140 2489 1055 140
hydr1 387 104 226 361 104 226
lhr07c 3489 622 858 2331 791 858
lhr14c 5953 1530 2755 8992 2849 2755
meg1 77970 28129 1750 54395 18375 1750
onetone2 19483 8646 14637 23980 9264 14637
orani678 210080 64517 1704 48247 8679 1704
rdist1 275 169 242 397 202 242
west2021 198 57 58 86 36 58

row reversal are presented in Tables II and III. In each case, the matrix is reordered using
our new code MC62 [5], with default settings for all the control variables.
From the tables, we see that for some problems, including bp1600 and orani678, it can be

extremely advantageous to reverse the row order. For other problems, such as hydr1, reversal
has little e�ect. Note also that reversing the order can reduce the maximum row frontsize
while increasing the mean row frontsize or the mean frontal matrix size. This is illustrated by
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problem lhr07c. In this case, which is the better ordering depends upon whether the prime
concern is to reduce main memory requirements (choose the smaller maximum frontal matrix
size), to minimize factor storage (choose the smaller mean row frontsize), or to minimize the
operation count (choose the smaller mean frontal matrix size). Since the cost of computing
the frontsizes for the forward and reverse orders is negligible compared with the cost of using
a frontal solver, MC62 computes a new row ordering and then automatically reverses it and
selects the better of the two orderings. By default, MC62 chooses the ordering for which the
mean frontal matrix size is smaller.
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