
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, VOL. 39, 3999-4020 (1996)

ELEMENT RESEQUENCING FOR USE WITH
A MULTIPLE FRONT ALGORITHM

J. A. SCOTT

Department of Computation and Information, Atlas Centre, Rutherford Appleton Laboratory, Oxon O X 1 I OQX, U.K.

SUMMARY
The multiple front algorithm is an extension of the frontal method to allow parallelism to be exploited in the
solution process. The finite-element domain is partitioned into a number of subdomains and a frontal
decomposition is performed on each subdomain separately. For a given partitioning of the domain, the
efficiency of the multiple front aigorithm depends on the ordering of the elements within each subdomain.
We look at the limitations of existing element reordering algorithms when applied to a subdomain and
consider how these limitations may be overcome. Extensive numerical experiments are performed on a range
of practical problems and, on the basis of the results, we propose a new element resequencing algorithm for
use with a multiple front algorithm.

KEY WORDS sparse matrices; frontal methods; Gaussian elimination; finite-element equations

1. INTRODUCTION

In this paper, we are concerned with the solution of n x n linear systems of equations

AX = b (1)

where A is a large sparse matrix arising from finite-element analysis. The matrix A is a sum of
elemental matrices

Each matrix A['] has entries only in the principal submatrix corresponding to the variables in
element 1 and represents contributions from this element. This principal submatrix is assumed to
be dense. The matrix A may be unsymmetric but the form (2) implies that the sparsity pattern is
symmetric with non-zero diagonal entries. One possible direct solution method for (l), and the
one which is still frequently the method of choice in many structural engineering applications, is
the frontal method (see, for example, Irons,' Hood,2 and DufT3).

The efficiency of a frontal scheme, in terms of both storage and computation time, is dependent
upon the ordering of the elements. This is because, in the frontal method, the system matrix A is
never assembled explicitly but the assembly and Gaussian elimination processes are interleaved,
with each variable being eliminated as soon as its row and column are fully summed, that is, after
its last occurrence in a matrix A[']. This allows all intermediate working to be performed in a full
matrix, termed thefrontal matrix, whose rows and columns correspond to variables that have not
yet been eliminated but occur in at least one of the elements that have been assembled. Since the

CCC 0029-598 1/96/233999-22
0 1996 by John Wiley & Sons, Ltd.

Received 28 March 1995
Revised 3 January 1996

4000 J. A. SCOTT

order of the frontal matrix increases when a variable appears for the first time and decreases
whenever a variable is eliminated, the order in which the elements is input is critical.

To formalize this, let us introduce some notation. If m is the number of finite elements in the
domain and fsizei is the number of variables in the frontal matrix after the assembly of the ith
element, the maximum frontsizefmax is defined to be

jinax = max {fsizei}
l < i < m

and the root mean-square (r.m.s) frontsize frms is defined to be

(3)

In a frontal algorithm, the maximum amount of storage required for the frontal matrix during the
Gaussian elimination is dependent upon the maximum frontsize. Moreover, the number of
floating-point operations performed after the assembly of the ith element and before the assembly
of the (i + 1)th element is dependent upon fsize?. The elements should therefore be numbered in
such a way as to reduce fmax and frms.

In recent years, many algorithms for automatically ordering finite elements have been pro-
posed in the literature. These include the methods described by Akin and Pardue," Bykat,'
Razzaque,6 P i r ~ a , ~ Sloan and Randolph,' Fenves and Law? Sloan," Shephard et al.," Duff
et al.,'? Kaveh,13 Koo and Lee,14 Medeiros et al.,l' and Paulino et al.I6 Each of these algorithms
is designed to reorder all the elements in the finite-element domain (they are global reordering
schemes). However, in a multiple front method, the finite-element domain is partitioned into
a (small) number of subdomains and a frontal decomposition is performed on each subdomain
separately.' ', " For a multiple front method, a global reordering algorithm is unlikely to provide
efficient element orderings. It is the need to develop element ordering schemes which are efficient
when applied to a subdomain that motivates the current study.

The remainder of this paper is organized as follows. We review the multiple front algorithm in
Section 2 and in Section 3 we introduce some basic concepts from graph theory. In Section 4 we
discuss the main features of the element reordering algorithm used by the Harwell Subroutine
Librarylg (HSL) routine MC43, which is designed to resequence elements for use with the HSL
frontal code MA42.20.21 We also look at why this algorithm is unsuitable for reordering elements
for use with the multiple front algorithm. In Section 5 we propose two new schemes for ordering
elements in a subdomain and in Section 6 we report on the performance of these methods when
used on a range of practical problems. Finally, in Section 7 concluding remarks and comments
are made.

2. THE MULTIPLE FRONT ALGORITHM

The power of frontal schemes comes from the fact that they are able to solve quite large problems
with modest amounts of high-speed memory and the fact that they can use dense linear algebra
kernels, in particular the Level 3 Basic Linear Algebra Subprograms (BLAS)39 for the numerical
factorization. However, there are two main deficiences with frontal schemes. The first is that far
more arithmetic may be done than is required by the numerical factorization. This is illustrated
by the matrix LOCK3491 from the Harwell-Boeing Collection.z5326 If the original problem is
reordered using the HSL routine MC43, 95*106 floating-point operations (flops) are required by
the HSL frontal solver MA42 to factor the matrix, but if the HSL multifrontal code MA37 is used,

ELEMENT RESEQUENCING FOR USE WITH A MULTIPLE FRONT ALGORITHM 4001

the flop count reduces to 40*106. The second deficiency of the frontal method is that there is little
scope for parallelism, other than that which can be obtained within the higher level BLAS. One
way of overcoming these problems is to extend the basic frontal algorithm to use multiple fronts.
The use of multiple fronts depends upon being able to decouple the underlying 'domain' and
eliminate variables within each subdomain inder cndently. The logical conclusion of this ap-
proach is the so-called multifrontal algorithm (s 2, for example, Duff and Reid:'), where many
fronts are started simultaneously. The variables that are not immediately eliminated are com-
bined to form new elements or fronts which are then merged with other new elements or original
elements according to an assembly tree. The initial fronts (which may number nearly half the
total) and the assembly tree are identified by a flop-reducing ordering such as minimum degree or
nested dissection. In this study we use the term multiple fronts for algorithms for solving systems
of finite-element equations which partition the finite-element domain into a number of subdo-
mains and perform a frontal decomposition on each subdomain using an element-by-element
ordering in a somewhat similar fashion to Benner et and Zhang and Liu?l We reserve the
term multifrontal for algorithms for solving systems of equations (which may or may not arise
from a finite-element application) where a symbolic analysis to construct an elimination tree is
first performed using a standard flop-reducing ordering. In the remainder of this section we
briefly discuss the use of multiple fronts.

Consider a finite-element domain which has been partitioned into (non-overlapping) subdo-
mains. Variables which belong to a single subdomain are termed internal variables and variables
which lie on the interface boundaries of the subdomains are called interface variables. In general,
each subdomain will contain some elements whose variables are all internal variables and some
elements with both internal and interface variables. Elements containing only internal variables
are called internal elements and those with one or more interface variables are called interface
elements. Internal variables may be eliminated as soon as they are fully summed (provided, of
course, that stability criteria are satisfied) but interface variables cannot be eliminated within
a subdomain since they are shared by more than one subdomain. In a multiple front algorithm,
a frontal solver is applied to each subdomain separately. Since the factorizations of the subprob-
lems are independent, this can be done in parallel. At the end of the assembly and elimination
processes for the subdomains, for each subdomain i there will remain a subdomain frontal matrix
Fi and a corresponding frontal right-hand-side vector ci (or matrix, if there are multiple right-
hand sides) satisfying

Fiyi = Ci (5)

If there are nsub subdomains, nsub equations of the form (5) are generated and these may be
assembled to give

F Y = C (6)
where the order of the matrix F is the number of interface variables (plus any internal variables
not eliminated for stability reasons). By treating each of the subdomain frontal matrices Fi as an
elemental matrix, the system (6) may also be solved by a frontal scheme. Once (6) has been solved,
the results for the interface variables must be passed back to the subdomains so that back-
substitution for the internal variables can be performed. The back-substitutions on the subdo-
mains may also be performed in parallel. For further details, see Duff and ! k ~ t t , ' ~ * ' ~ who also
provide numerical examples illustrating the speed-ups which can be obtained when the multiple
front algorithm is implemented in a parallel environment.

In the multiple front algorithm, once an interface variable has entered the subdomain frontal
matrix it cannot be eliminated. Therefore, an element ordering scheme which yields an efficient

4002 J. A. SCOTT

global ordering may give very inefficient orderings when applied to a single subdomain. The aim
of this study to develop a new element ordering scheme which is efficient when used with the
multiple front algorithm.

3. GRAPHS AND FINITE-ELEMENT DOMAINS

Associating graphs with finite elements is useful when developing element reordering algorithms.
In this section, we briefly recall some basic definitions from elementary graph theory which are of
relevance to this paper.

An undirected graph G is defined to be a pair (V, E), where V is a finite set of nodes (or uertices),
and E is a finite set of edges defined as unordered pairs of distinct nodes. A labelling (or ordering)
of a graph G = (V , E) with n nodes is a bijection of { 1,2, . . . , n} onto V . The integer i (1 Q i < n)
assigned to a node in V by a labelling is called the label (or number) of that node. Two nodes i and
j in G are said to be adjacent if (i , j) E E. The degree of a node i E G is defined to be the number of
nodes in G which are adjacent to i , and the adjacency list for i is the list of these adjacent nodes.
A path of length k in G is an ordered set of distinct nodes (io, i l , . . . , i k) , where (i j - 1, i j) E E for
1 Q j Q k. Two nodes are connected if there is a path joining them. A graph G is connected if each
pair of distinct nodes is connected. Otherwise, G is disconnected and consists of two or more
components.

The distance between nodes i and j in a connected graph G (or in a component of a discon-
nected graph) is denoted by d(i , j) , and is defined to be the number of edges on the shortest path
connecting them. The diameter D (G) of G is the maximum distance between any pair of nodes.
That is,

D(G) = max {d(i , j) I i, j E V }

Nodes at opposite ends of a diameter of G are known as peripheral nodes. A pseudo-diameter 6(G)
is defined by any pair of nodes i and j in G for which d(i, j) is close to D(G). A pseudo-diameter
may be slightly less than, or equal to, the true diameter and is found by some heuristic algorithm.
Nodes defining a pseudo-diameter are termed pseudo-peripheral nodes.

A level structure rooted at a node r E V is defined as the partitioning of V into levels
I I , /2 , . . . , I , , (, .) such that

0) 1 1 =
(ii) for i > 1, l i is the set of all nodes that are adjacent to nodes in l i - l but are not in

The level structure rooted at node r may be expressed as the set L(r) = { 1 1 , 1 2 , . . . , l h (r) } , where
h(r) is the total number of levels and is termed the depth. The number of nodes on level i is the
width of level i and is denoted by Ilil. The width of the level structure L(r) is given by

l l , l Z , * . . , l i - 1.

w (r) = max l l i l .
1 < i < h (r)

A list is an ordered set. A priority queue is a list from which deletions or extractions are made on
the basis of a priority function.

Ajnite-element domain is a collection of finite elements in which the elements are joined at their
common boundaries and vertices. Finite-element nodes may lie at vertices, along the sides, on the
faces, or within the element itself. Associated with each finite-element node is a set of one or more
variables corresponding to the freedoms at that node. A convenient way of associating a graph

ELEMENT RESEQUENCING FOR USE WITH A MULTIPLE FRONT ALGORITHM 4003

with a finite-element domain consists of choosing the nodes of the graph to be the finite elements
and using the interconnection of the finite elements to determine the edges. Relabelling the nodes
of this element connectivity graph is equivalent to reordering the elements of the associated
finite-element domain and an algorithm which does this is termed a direct element reordering
algorithm."

There are several possible ways to use the interconnection of the finite elements to determine
the edges of an element connectivity graph. BykatS defines two elements to be adjacent to one
another whenever they share a common edge and describes his algorithm in detail for planar
triangular elements. Fenves and Law' generalize this definition to problems in n dimensions,
n = 1,2,3. They define two elements in n dimensions to be adjacent whenever they possess
a common boundary of (n - 1) dimensions. Thus in three dimensions two volumetric elements
are adjacent if they share a common two-dimensional boundary face; in two dimensions planar
elements are interconnected by one-dimensional boundary lines; and one-dimensional finite
elements are adjacent if they have a common finite-element node. Fenves and Law noted that the
adjacency of elements cannot always be completely represented by this definition of adjacent
elements, since n-dimensional elements are not necessarily connected through (n - 1)-dimen-
sional boundaries. In addition, adjacent finite elements do not necessarily have the same
geometric boundaries. In such examples, the element connectivity graph may become discon-
nected, and each component must be numbered independently. This contributes to the difficulties
associated with attempting to use this definition of element adjacency.

To try and avoid these difficulties, K a ~ e h ~ ~ defines two elements of dimension nl and n2,
respectively, to be adjacent if they have a common face which is of dimension min(n,, n 2) - 1.
Duff et a l l 2 adopt an even simpler definition: they define two elements to be adjacent to each
other whenever they have one or more variables in common. Using this definition, it is not
difficult to generate the associated element connectivity graph; the user does not need to provide
information on the different types of elements in the grid other than a list of the variables
associated with each finite element. From their numerical experiments, Duff et al. report that
using this definition to generate the element connectivity graph and then employing their direct
element reordering algorithm did not, in general, lead to a significant increase in the frontsizes
compared with those obtained using the element connectivity graph resulting from the adjacency
definition of Fenves and Law. The definition of adjacency introduced by Duff et al. has recently
been used by Paulino et a1.,I6 who term the resulting connectivity graph the element cornmunica-
tion graph. Throughout the remainder of this paper we will use the Element Communication (EC)
graph.

4. ELEMENT REORDERING USING MC43

In this section we look at the key features of the direct element reordering algorithm used by the
Harwell Subroutine Library code MC43 and illustrate the shortcomings of the algorithm if it is
used in conjunction with the multiple front method. The MC43 element reordering algorithm
exploits the profile reduction algorithm of Sloan." It has three distinct steps:

(1) selection of a pair of pseudo-peripheral elements (nodes),
(2) element relabelling,
(3) computation of the maximum frontsize.

In the first step, for each component of the Element Communication (EC) graph, a pair of
pseudo-peripheral elements (nodes) is located. It has been found that, because these elements tend
to yield rooted level structures which are deep and narrow, they make good starting elements for

4004 J. A. SCOTT

profile and wavefront reduction algorithms (see GibbsZ2 and Sloan and Randolph.’). The
procedure used in MC43 to locate pseudo-peripheral elements is a modification of that described
by Gibbs et aLZ3 and George and L b Z 4 A starting element s E G of minimum degree is chosen,
and the rooted level structure L(s) is generated. The last level set i&) is ‘shrunk‘ by retaining only
elements with distinct degrees, ties being broken arbitrarily. The level structures rooted at each
element in this reduced set (selected in order of increasing degree) are then computed. If, for some
r E l h (s) , the depth of L(r) exceeds h(s), r replaces s as the starting element, and the procedure is
repeated. If no such element r is found, and e is the element in Ih(s) whose associated level structure
has the smallest width, the elements s and e are chosen as pseudo-peripheral elements. A ‘short
circuiting’ strategy by which wide level structures are rejected as soon as they are detected is
incorporated. This algorithm for locating s and e has also recently been used by Medeiros et a1.l’

In the second step of the algorithm, the elements in each component of the EC graph are
renumbered to obtain a profile which is smaller than that given by the original labelling of the
graph. The pseudo-peripheral elements s and e serve as starting and end elements for the
relabelling within their component. The rooted level structure L(e) is generated and the distance
d(e, i) of each element i from the end element e is computed. The starting element s is relabelled
as element one and a list of elements that are eligible to receive the next label is formed. At
each stage in the relabelling process the list of eligible elements comprises those elements which
are either adjacent to a element which has been relabelled or are adjacent to a element which is
itself adjacent to a relabelled element. The next element to be given a new number is the element
among all eligible elements with the highest priority, where the priority Pi of element i is defined
to be

Pi = - W1 * ngain(i) + W 2 * d(e, i) - W 3 * nadj(i). (7)

Here W1, W z and W3 are integer weights, ngain(i) is the number of variables element i will
introduce into the front less the number that can then be eliminated, and nadj(i) is the number of
elements adjacent to element i which have not yet been relabelled. The basic idea of the algorithm
is that, during the reordering process, elements which will make only a small increase to the
frontsize (or will decrease the frontsize) and which are at a large distance from the end element are
labelled first. The third term means preference is also given to elements which have only a small
number of unlabelled neighbours. The values assigned to the weights determines the importance
of each of these criteria. As a result of numerical experimentation, in MC43 the weights have the
values W1 = 10, W 2 = 5, and W3 = 1. Since W 3 = 1 is much smaller than W 1 and W 2 , the
number of unlabelled neighbours is essentially only used to resolve ties (see Duff et al.” for
further discussion). We remark that although the EC graph does not take into account the
number of variables in each element, the priority Pi of element i given by (7) does depend on the
number of variables it has.

Once all the elements have been renumbered, MC43 computes the maximum frontsize for the
new ordering. If this is larger than the maximum frontsize for the initial ordering, the user is
warned that no reduction in the maximum frontsize was achieved and the initial ordering is
retained. The value of the maximum frontsize returned by MC43 is useful if the HSL frontal
solver MA42 is to be employed since it assists the user in choosing the size of the frontal matrix
required and the sizes of the files which will hold the LU factors of A.

Experience has shown that, when used with MA42, the orderings generated by MC43 are
efficient.12~20~21 There are, however, weaknesses in each step of the MC43 algorithm if it is
employed to resequence the elements in a subdomain for the multiple front algorithm. When
locating pseudo-peripheral elements, MC43 does not distinguish between internal and interface
elements. As a result, MC43 may choose as a starting element an element containing interface

ELEMENT RESEQUENCING FOR USE WITH A MULTIPLE FRONT ALGORITHM 4005

variables. In general, this will be a poor choice since the element numbering should start with
elements lying away from the interface boundaries so as to delay the introduction of interface
variables into the subdomain front for as long as possible. To illustrate this consider an N x 2N
rectangular domain of rectangular elements. Suppose the elements are initially ordered pagewise
parallel to the side of length N and the domain is then partitioned into two, with elements 1 to NZ
in subdomain 1 and elements N 2 + 1 to 2N in subdomain 2. If MC43 is applied to each
subdomain (with the ith element in subdomain 2 corresponding to element N 2 + i in the original
domain) the initial orderings will be returned. That is, the ordering for subdomain 1 will start at
the exterior boundary and work towards the interface boundary while for subdomain 2 the
elements along the interface boundary will be reordered first and those on the exterior boundary
last. MC43 is not able to distinguish between these two orderings but, in the multiple front
algorithm, the ordering for subdomain 2 will be much less efficient than that for subdomain 1. For
example, if N = 8 and there are five variables at the corners, mid-points of the sides, and centre of
each element, numerical experimentation shows that in the multiple front algorithm the two
subdomains have r.m.s. frontsizes of 111.5 and 188.1, respectively, and require 1-86*10' and
577* 10' floating-point operations, respectively.

In the second step of the MC43 algorithm, the reordering is based on the priorities of the
elements computed using (7). As we have already seen, an element has a high priority if (a) the net
gain it makes to the frontsize is small, (b) it is at a large distance from the end element, and (c) it
has a small number of neighbours which have not already been relabelled. Since MC43 is a global
algorithm, when calculating the net gain to the frontsize, it is assumed that any variable appearing
for the last time may be eliminated. For a subdomain this is no longer true since interface
variables may not be eliminated within the subdomain. Failure to take this into account can lead
to interface elements being assigned a high priority and being relabelled early in the reordering
algorithm. Furthermore, MC43 may select as the end element e an element lying a long way from
the interface boundary. In this case, d(e, i) will be large if i is an interface element and will again
lead to a high priority for interface elements. This is unlikely to yield an efficient ordering.

In the final step, MC43 returns the original and new maximum frontsizes to the user. When
a frontal scheme is applied to a domain which has not been partitioned, in general the maximum
frontsizes will occur after some, but not all, the elements have been assembled. However, when the
domain is partitioned into subdomains, the maximum frontsize may occur after all the elements
have been assembled, and the remaining front then comprises the interface variables (plus any
internal variables which have not been eliminated for stability reasons). Since MC43 is unable to
distinguish between interface and internal nodes, the maximum frontsizes it returns may be
significantly smaller than the frontsizes required by the multiple front method. As already noted,
if MC43 finds that the maximum frontsize for the ordering it generates is larger than for the
original ordering, it will reject the new ordering and retain the original ordering. But in the
multiple front algorithm, the rejected ordering can be more efficient then the accepted ordering.
To illustrate this we took the test problem AEAC5081 and partitioned the domain into 16
subdomains using the code Chaco (see Section 6 for details of the test problems and Chaco).
MC43 was applied to subdomain 12. The maximum frontsize for the initial ordering was 61.
MC43 generates an ordering with a maximum frontsize of 47 so MC43 accepts the new ordering.
In the multiple front algorithm, the new ordering gives maximum and r.m.s. frontsizes of 131 and
91.1, respectively, while the rejected (original) ordering yields frontsizes of 100 and 72.1. Thus, for
this subdomain, the ordering which was rejected by MC43 provides a more efficient ordering than
the one which was accepted.

From the above discussion it is clear that the global reordering algorithm implemented by the
code MC43 is not suitable for reordering the elements in a subdomain. Other global reordering

4006 J. A. SCOTT

schemes applied to a subdomain suffer similar problems to those experienced by MC43 because
they too have no concept of internal and interface elements. To be able to use a multiple front
algorithm effectively we need to develop a reordering scheme which takes account of interface
variables; this is the subject of the rest of this paper.

5. REORDERING ELEMENTS IN A SUBDOMAIN

Algorithms to reorder elements in a subdomain require knowledge of the interface variables. The
interface variables also need to be known when the frontal code MA42 is used to implement the
multiple front algorithm outlined in Section 2. We have developed a Harwell Subroutine Library
package, MA52, which allows MA42 to be used to implement a multiple front algorithm. MA52
can also be used to generate the list of interface variables for a subdomain. Following the
terminology of Duff and

Intuitively, reordering of a subdomain should begin well away from the interface boundary. We
consider two approaches for finding a suitable starting element and we compare the performance
of the two approaches in Section 6. Throughout Sections 5.1-5.4 we will assume that the EC
graph is connected; in Section 5.5 we will consider the case of it having more than one
component.

this list is termed the guard element.

5.1. Approach I

algorithm used by MC43. The steps in finding s and e are as follows.
In Approach I we locate starting and end elements s and e using a modified version of the

(1) Generate a list of interface variables. Flag all elements containing interface variables as
interface elements. The unflagged elements are internal elements.

(2) Select an element s of minimum degree (that is, an element with the smallest number
of adjacent elements), if necessary breaking ties by giving preference to internal
elements.

(3) Generate the rooted level structure L(s) = {11, 12, . . . , l h (s) } .

(4) Sort the elements in the last level / h (s) in ascending order of their degrees.
(5) Shrink

(6) Set w = 00.

(7) For each element r E in order of increasing degree, generate L(r). If h(r) > h(s) and
w(r) < w, set s = r and go to 4. Else if w(r) < w, set e = r and w = w(r).

(8) If s is an internal element go to 9. Else if s is an interface element and e is an internal element
then set s = e and e = s and go to 9. Else s and e are interface elements. Generate L(s) and
consider the elements in the middle level set I h (s) / 2 . If there are no internal elements go to 9.
Else choose s to be the internal element in & (s) / 2 of minimum degree, breaking ties
arbitrarily.

to a list Tby retaining only one element of each degree, if necessary breaking ties
by giving preference to internal elements.

(9) Accept s and e as starting and end elements, respectively.

We remark that the choice for s made in step 8 in general ensures that we begin the element
renumbering away from an interface boundary. The case when the elements s and e found in step
7 are both interface elements may occur if the subdomain has interface variables on all sides.
Choosing the starting element to lie in the middle set Ih(s) /2 is then a way of starting the element
reordering with an element at an approximate centre of the subdomain.

ELEMENT RESEQUENCING FOR USE WITH A MULTIPLE FRONT ALGORITHM 4007

5.2. Approach It

In our second approach, we treat the guard element g for the subdomain as an extra element.
Suppose there are nelt finite elements in the subdomain and let g be labelled element nelt + 1. Let
the element communication graph for this augmented set of elements be denoted by E C (g) . Recall
that in an element communication graph, two elements are adjacent if they have a variable in
common. Since the variables in the guard element are the interface variables, in the E C (g) graph
the guard element is adjacent to all the interface elements. By considering the rooted level
structure L(g) , we can locate elements which lie away from the interface boundary and which
should make a good choice for the starting element for reordering elements in the subdomain.

Using this idea, the steps in Approach I1 for choosing a starting element s are as follows:

(1) Generate the guard element g .
(2) Generate the element communication graph E C (9) .
(3) Generate the rooted level structure L (g) = { l l , l2 , . . . , l h (g] } .

(4) Shrink i h (g) to a list rby retaining only one element of each degree (breaking ties arbitrarily).
(5) Set h = 1.
(6) For each element r E rgenerate L (r) . If h (r) > h, set h = h(r) , s = r.

In this way, the starting element is chosen to be at a maximum distance from the interface
boundary. For a subdomain with interface variables on all sides, Approach I1 provides a straight-
forward way of locating an element at the approximate centre of the subdomain. An advantage of
this approach is that it avoids the need to locate pseudo-peripheral elements and, except when all
the elements in the subdomain are interface elements, the starting element will always be an
internal element. The end element is taken to be the guard element, that is, e = g . The distance
d(e, i) is the distance of element i from the interface boundary. A disadvantage of Approach I1 is
that (s , e) may not provide a good estimate to the diameter of the element communication graph.
Furthermore, the E C (g) graph has more edges than the E C graph, the number of extra edges
being dependent upon the number of interface variables. The E C (g) graph therefore takes longer
to generate than the E C graph and can lead to Approach I1 being slower than Approach I.
However, in our experience, the difference in the times for Approaches I and I1 was insignificant
compared with the time taken to solve the underlying finite-element problem using the multiple
front algorithm (see Tables 11-V in Section 6).

5.3. Element relabelling

Approaches I and I1 are procedures for choosing starting and end elements s and e for
a subdomain. The algorithm we use to relabel the remaining elements in the subdomain is based
on that used by MC43 but is modified to take into account interface variables. A priority queue is
used where now the priority Pi of element i given by

Pi = - W1 * ngain(i) + W 2 * d(e , i) - W , * nad’(i) - W4 * nint(i) (8)

Here W 1 , W2, W3 and W4 are integer weights. The quantity ngain(i) is the number of variables
element i will introduce into the front less the number of internal variables that can then be
eliminated. Since interface variables cannot be eliminated within a subdomain, if element
i contains one or more interface variables, ngain(i) will be higher than for the same element in
a single domain problem and the element will therefore have a lower priority. As in (7), nadj(i) is
the number of elements adjacent to element i which have not yet been relabelled. The quantity

4008 J. A. SCOTT

nint(i) is the number of interface variables the element will introduce into the front and is
non-zero only if i is an interface element. The aim of (8) is to give a high priority to internal
elements. For Approach 11, in which the end element e is the guard element, d(e, i) will be large if
element i is well away from the interface boundary and this will lead to these elements being given
a high priority. Moreover, for Approach 11, nint(i) will be non-zero only if d(e, i) is equal to 1 and
so for this approach we set W4 = 0. On the basis of our numerical experiments, we suggest
choosing the weights to have values W1 = 12, W 2 = 6, W3 = 1, and (for Approach I only)
W4 = 2. As in MC43, the number of unlabelled neighbours only acts to resolve ties. These weights
were used in the numerical experiments reported on in Section 6. We found that, in general, small
changes to these weight values had no significant effect on the quality of the orderings obtained
but, if a weight was omitted or the ratios between the weights were substantially altered, for some
of the subdomains in our test problems, the resulting orderings had significantly larger frontsizes.
Examples illustrating this are included in Section 6 (see Table VI).

5.4, Selecting the element order

In MC43, the maximum frontsize is computed for the original and new element orderings. If the
new ordering has a maximum frontsize which is no smaller than the maximum frontsize of the
original ordering, the original ordering is retained. For the subdomain problem, returning the
maximum frontsize which takes into account the interface variables is useful since the frontal
solver will need a frontal matrix of at least this size. However, it is not necessarily the appropriate
criteria to use to choose between the original and new orderings. As we have already mentioned,
for a subdomain, the maximum frontsize may occur after all the elements have been assembled
and, in our experience, the reordering algorithms often failed to produce an ordering with
a maximum frontsize which was smaller than that for the original ordering. An alternative criteria
is to use the r.m.s. frontsize so that if the new ordering provides a smaller r.m.s. frontsize than the
original ordering, the new ordering is chosen.

In general, we have found that the choice we have made between the original user-supplied
ordering and the new element orderings based on the r.m.s. frontsize has been the correct one.
That is, when the frontal solver has been applied to the subdomain, the number of floating-point
operations required by the accepted ordering has been fewer than the number required by the
rejected ordering. However, even if stability considerations do not cause pivots to be delayed, it is
possible that the accepted ordering may still result in the multiple frontal solver requiring more
floating-point operations than would be needed by the rejected ordering. When computing the
maximum and r.m.s. frontsizes for a given ordering, it is straightforward to also compute the
number of floating-point operations the Harwell frontal solver MA42 will require when applied
to the subdomain (assuming stability considerations do not cause variables to remain in the front
once they are fully summed). In our numerical experiments we compute the number of floating-
point operations and choose the ordering for which this is smallest. In this way, when combined
with the multiple front algorithm, the element ordering we use never requires more work than the
original ordering.

5.5. Coping with more than one component

For the single domain problem, if the EC graph has more than one component, each
component is reordered separately. The maximum frontsize and the r.m.s. frontsize are indepen-
dent of the order in which the components are renumbered. However, for the subdomain problem
we need to consider the case of more than one component more carefully since the quality of the

ELEMENT RESEQUENCING FOR USE WITH A MULTIPLE FRONT ALGORITHM 4009

element ordering will depend upon the order in which the components are renumbered. To
illustrate this consider, for example, a subdomain with an associated EC graph with two
components, a and b. Suppose the elements in component a are passed to the frontal solver first.
Let Fa denote the frontal matrix after the last element in component a has been assembled. F, is of
order at least nsub,, where nsub, is the number of interface variables lying within component a.
After some of the elements in component b have been assembled the frontal matrix will be of the
form

F,(Fa O F ’) (9)

The frontal solver MA42 treats the frontal matrix as dense and so is unable to exploit the zero
blocks in (9). Thus unnecessary work will be performed and, unless nsub, is small, it will generally
be more efficient to split the subdomain into two subdomains, corresponding to the two
components a and b. If the subdomain is not partitioned, we renumber the components in
increasing order of the number of interface variables they contain. Note that, if there are any
components with no interface elements, these components can be renumbered first using the
standard MC43 algorithm.

In Approach 11, the EC(g) graph is generated. Although the EC graph may have more than one
component containing interface variables, the EC(g) graph has only one such component. We
could apply the two-step algorithm described in Sections 5.2 and 5.3 directly to this single
component graph but this can lead to the reordering ‘jumping’ about between the components
(that is, some of the elements in the first component may not have been renumbered before some
of the elements in another component are renumbered). As might be expected, numerical
experimentation shows that this can result in poor orderings. Instead, when the EC(g) graph has
more than one component, we modify Approach II so that, when constructing rooted level
structures L(r) using the EC(g) graph, we only include elements lying in the same component of
the EC graph as the root r. This is equivalent to splitting the guard element into ncomp guard
elements, where ncomp is the number of components in the EC graph. Each of these ncomp guard
elements is a list of the interface variables lying in the corresponding component of the EC graph.
The improvements this can give may be illustrated using problem LOCK1074 from the
Harwell-Boeing sparse matrix c o l l e ~ t i o n . ~ ~ ~ ~ ~ We partitioned the finite-element domain into
4 using the code Chaco (see Section 6 for details) and generated the EC graph for each
subdomain. The EC(g) graphs for subdomains 3 and 4 were found to have 3 and 2 components,
respectively. Applying Approach I1 to the single component EC(g) graphs for these subdomains
gave r.m.s. frontsizes of 185.8 and 196.3, respectively. However, using the proposed modification,
the r.m.s. frontsizes were reduced to 118.4 and 114.7, respectively.

6. THE TEST PROBLEMS

In this section, we report the results of using our proposed subdomain element resequencing
algorithms on a range of test problems. All our numerical experiments were performed on
a CRAY Y-MP81 using single precision arithmetic and all the reported CPU timings are in
seconds. In our experiments, we have only used a single processor of the CRAY but since the
reordering of the elements in each subdomain are independent, this can be done in parallel and, as
already discussed, the frontal method can be applied to each subdomain in parallel. Throughout
this section, all computed frontsizes allow for the interface variables, that is, they are the frontsizes
for the multiple front algorithm. For the MC43 element ordering the frontsizes are computed
outside the MC43 code.

4010 J. A. SCOTT

We first use a model problem in which the elements are nine-node rectangular elements with
nodes at the corners, mid-points of the sides, and centre of the element. A parameter to the
element generation routine determines the number of variables per node. We have chosen this
parameter to be five in our numerical experiments. The elements are arranged in a rectangular
grid of size 4N x 4N and are initially ordered pagewise. The number of variables is 5(4N + 1)’.
The grid is partitioned into k equal subdomains of order 4N x 2N if k = 2, 2N x 2N if k = 4,
N x 2N if k = 8, and N x N if k = 16. If k is equal to 2 or 4, it is straightforward to order the
elements efficiently within each subdomain. However, if the number of subdomains is 8 or 16,
even for this simple problem it is less apparent how to do this. In Tables I(atI(c) we present
results for MC43, Approach I, and Approach I1 applied to the 4-, 8-, and 16-subdomain problem,
respectively, with N = 12. For each subdomain, the maximum frontsize fmax and the r.m.s.
frontsize frms for the different element orderings are given and the ordering which gives the
smallest r.m.s. frontsize is in bold typeface. The CPU times required by the element-reordering
algorithms for 2, 4, 8, and 16 subdomains are shown in Table 11. In addition, the number of
floating-point operation (flops) and the CPU time taken by the multiple front algorithm are
given. The number of floating-point operations includes the floating-point operations for the
frontal algorithm in each subdomain together with the floating-point operations needed to solve
the interface problem (6) using the HSL code MA42.

From Tables I(a)-I(c) we see that the orderings generated by Approaches I and 11 have smaller
r.m.s. frontsizes than the MC43 ordering and, in general, they also have smaller maximum
frontsizes. For each subdomain in the 4- and 16-subdomain problems, Approach I1 generates an
element ordering with a smaller r.m.s. frontsize than Approach I. In some subdomains in the
8-subdomain problem, Approach I does slightly better than Approach 11. However, the quality of
the ordering generated by Approach I appears to be more dependent on the initial ordering than
the Approach I1 ordering is. For example, for the 4-subdomain problem, Approach I1 produces
orderings with the same maximum and r.m.s. frontsizes for each of the subdomains but Approach
I gives orderings which have slightly different r.m.s. frontsizes in each subdomain. From Table I1
we see that MC43 is cheaper to use than Approaches I and 11, but the small extra cost entailed in
using one of the new approaches is more than justified by the savings which the resulting element
orderings give in the CPU timings for the multiple front algorithm. We also observe the amount
of work can be reduced by partitioning the domain into more subdomains. However, as the
number of subdomains increases, the number of interface variables increases and the work
involved in solving the interface problem also increases and this rapidly dominates the computa-
tion costs. One possible way of increasing efficiency further is by nesting the multiple front
algorithm (see, for example, Benner et ~ 1 . ~ ’) .

In addition to the model problem, a range of problems arising from practical applications have
been used to test and assess the quality of the element reordering algorithms discussed in this
paper. The problems range in size from 360 to 23446 elements. A brief description of each test
problem is given in Table 111. Problems with origin HB were taken from the widely used
Harwell-Boeing sparse matrix collection.25926 Those with origin AEAT were supplied by
Andrew Cliffe of AEA Technology, Harwell Laboratory; those with origin DNVR came from
A. C. Damhaug of Det Norske Veritas Research, Norway; and those with origin RALPAR were
supplied by R. F. Fowler of the Rutherford Appleton Laboratory. For the RALPAR problems,
only element connectivity information was available (that is, lists of the finite-element nodes
belonging to each element were supplied but not the variables associated with each of the nodes).
Thus, the results we present for the RALPAR problems may only be regarded as an indication of
the relative performance of the different reordering algorithms. They will be a good indication of
performance if the number of variables per finite-element node is relatively constant. For the

ELEMENT RESEQUENCING FOR USE WITH A MULTIPLE FRONT ALGORITHM 401 1

Table I(a). A comparison of MC43, Approach I, and Approach I1
for the 4-subdomain model problem

MC43 Approach 1 Approach I1
Subdomain fmax frms fmax frms fmax frms

1 505 393-7 505 393.7 505 367.9
2 515 403.1 505 3942 505 367-9
3 745 623.1 505 3952 505 367.9
4 750 632.7 505 394.7 505 367-9

Table I(b). A comparison of MC43, Approach I, and Approach I1
for the 8-subdomain model problem

MC43 Approach I Approach I1
Subdomain fmax frms fmax frms fmax frms

1
2
3
4
5
6
7
8
-

385 277-8
625 417-1
625 417.1
395 286.6
505 390.9
735 523-0
735 523.0
510 400.0

385
625
625
385
405
625
625
385
-

277.8 385
417.1 625
417.1 625
2782 395
277.8 385
417.1 625
417.1 625
278.2 385

277-8
417-1
417.1
286.6
294.4
417.1
417.1
294.4

Table I(c). A comparison of MC43, Approach I, and Approach I1
for the 16-subdomain model problem

MC43 Approach I Approach I1
Subdomain f i x frms fmax frms fmax frms

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

265
385
385
275
385
500
500
395
385
500
500
395
385
495
495
390

210-3
280-7
280-7
219.3
325-9
390-2
390.2
334.7
325-9
390-2
390.2
334.7
321.0
385-2
385-2
330.2

265
385
385
265
385
500
500
405
385
500
500
405
285
385
385
385

210.3 265
280.7 385
280.7 385
211.1 265
280.7 385
385.7 500
385.7 500
321.7 385
280.7 385
385.7 500
3857 500
321.7 385
210.3 265
280.7 385
280.7 385
210.3 265

198.3
2807
2807
198.3
2807
366.8
366.8
2807
280.7
366-8
366-8
280-7
1983
280-7
280.7
1983

4012 J. A. SCOTT

Table 11. CPU times (seconds) for reordering the elements together with floating-point operation counts
(flops) and CPU times (seconds) for solving the model problem using the multiple front algorithm

MC43 Approach I Approach I1

Number Recorder Solve Recorder Solve Recorder Solve
of CPU Total CPU CPU Total CPU CPU Total CPU
subdomains time flops time time flops time time flops time

2 0.50 1-82E + 10 82.46 0.63 1.7EE + 10 79-45 055 1.70E + 10 77.68
4 0.51 1.85E + 10 83.62 066 1.04E + 10 51-09 0.56 9.05E + 09 45.26
8 0.55 1.21E + 10 57.66 0.71 9.07E + 09 45.11 061 9.26E + 09 46.22

16 0.65 8.95E +09 44.63 083 751E + 0 9 38-49 0.71 7.00E + 09 36.10

Table 111. The test problems
~~~~ ~ ~ ~~~ 

Problem Number of Number of 
identifier Origin Description variables elements 

CEGB3024 

CEGB3306 

LOCK2232 

LOCK3491 

AEAC508 1 
RFLOWl 
OPT 1 
TRDHEIM 
TSYL201 

JETN 
CHAM 
TUBU 

HB 

HB 

HB 

HB 
AEAT 
AEAT 

DNVR 
DNVR 
DNVR 

RALPA R 
RALPAR 
RALPA R 

2D cross-section 
of a reactor core 

Framework problem from 
structural engineering 
Framework model of a 
launch umbilical tower 

2D vehicle model 
Double glazing problem 

Flow problem 
Part of a condeep cylinder 

Trondheim fjord model 
Part of a condeep cylinder 

3D pipe model 
Part of an engine cylinder 

Engine cylinder model 

2996 

3222 

2208 

3416 

508 1 
973 1 
15449 
22 098 
20 685 

548 
12 834 
26 573 

551 

79 1 

944 

684 

800 
1715 

977 
813 
960 
360 

11 070 
23 446 

other problems, a list of the unknowns for each element in the finite-element domain was 
available. These lists did not include the constrained variables lying on boundaries with Dirichlet 
boundary conditions. Using these lists, the element orderings produced by the reordering 
algorithms may differ slightly from those which would be obtained if complete lists of the 
variables associated with each element in the finite-element domain were available. 

Before we could test the element reordering algorithms it was necessary to partition the 
underlying finite-element domains into subdomains. This problem has itself been the subject of 
much research in recent years and a variety of methods have been discussed in the literature. 
These methods include the greedy algorithm of Farhat,” bandwidth rn in imi~at ion ,~~ Keringhan 
and Lin methods,30 the inertial bisection method (see, for example, Simon3’), recursive graph 
p a r t i t i ~ n i n g , ~ ~  spectral partitioning  method^,^^.^^ and multilevel  method^.^' For the RALPAR 
problems, a partitioning of the finite-element domain into subdomains was supplied. This 
partitioning was obtained using the recursive graph bisection algorithm with the Keringhan and 
Lin refinement implemented in the Rutherford Appleton Laboratory code RALPAR  ode.^^,^' 



ELEMENT RESEQUENCING FOR USE WITH A MULTIPLE FRONT ALGORITHM 4013 

For the HB and DNVR problems and problem AEAC5081, the finite-element domain was 
partitioned using the Chaco package from Sandia National Laboratories." Spectral bisection 
with the Keringhan and Lin refinement was used. For the RFLOWl problem, a partitioning of 
the domain was supplied with the problem. 

In all our tests on the problems described in Table 111, we have chosen to partition the domain 
into at most 16 subdomains. This is consistent with the number of subdomains we anticipate 
when using the multiple front algorithm. Our experience has been that, as the number of 
subdomains increases (and consequently the number of interface variables increases), it becomes 
increasingly important to take into account the interface variables when reordering the elements. 

In Tables IV(a)-IV(d) we present results for the different element ordering algorithms for the 
HB, AEAT, DNVR, and RALPAR test problems, respectively. For each problem, the maximum 
and r.m.s. frontsizes (fmax andfrms) are given for each subdomain for the original user-supplied 
element ordering, the MC43 ordering, and the Approach I and Approach I1 orderings. The 
ordering which gives the smallest r.m.s. frontsize is in bold typeface. CPU timings for reordering 
the elements together with floating-point operation counts and CPU times for solving the test 
problems using the multiple front algorithm are given in Table V. The RALPAR examples are 
not included in Table V since lists of variables associated with the finite-element nodes were not 
available for these examples. For problems for which only the matrix sparsity pattern was 
available (the HB problems and problem AEAC5081), values for the matrix entries were 
generated using the Harwell Subroutine Library random number generator FA04. 

From Tables IV(a)-IV(d) we see that, in general, Approach I1 provides the element ordering 
with the smallest r.m.s. frontsize. As a result, the Approach I1 element orderings are generally 
the most efficient when combined with the multiple front algorithm (Table V). The only test 
problem for which Approach I1 does not give the best results is LOCK3491; for this problem, 
Approach I gives slightly better results. In most examples, MC43 does provide a better ordering 
(in terms of both the maximum and r.m.s. frontsizes) than the original ordering, but this is not 
guaranteed. For example, for subdomains 1 and 2 of problem TRDHEIM, the MC43 ordering 
has larger maximum and r.m.s. frontsizes than the original ordering and when used with the 
multiple front algorithm, requires more floating-point operations than the original ordering. 
As expected, Approach I, which is essentially the MC43 algorithm with modifications to allow 
for interface variables, almost always produces element orderings which are an improvement 
on those generated using MC43 but tie-breaking means that an improvement is again not 
guaranteed. 

The sizes of the reductions in the r.m.s. frontsizes and in the number of floating-point 
operations which are achieved using the reordering algorithms are obviously dependent on the 
original user-supplied element ordering. It is clear that for some of the test problems, the original 
ordering was reasonable and the reordering algorithms were only able to produce modest 
savings. From Table V we see that for problem AEAC5081, Approaches I and I1 gave savings in 
the floating-point operation counts of little more than 10 and 20 per cent, respectively. However, 
for many of the test problems the user was not able to provide a good initial ordering and for 
these problems the reordering algorithms gave substantial savings. For example, for problem 
OPT1, Approaches I and I1 reduced the floating-point operation count by about 68 and 75 
per cent, respectively. We performed some additional experiments in which the initial element 
ordering was arbitrary (that is, the user-supplied ordering was randomly permuted). The savings 
achieved using the reordering algorithms were impressive. For an arbitrary element order, the 
total number of floating-point operations required by the multiple front algorithm for problem 
TRDHEIM was 2.04*1010, but Algorithm I1 reduced this number by about 96 per cent to 
8*25* 10". 



4014 J. A. SCOTT 

Table IV(a). A comparison of the original, MC43, Approach 1, and Approach 11 element orderings for the HB test 
problems 

Number 

MC43 Approach I Approach I1 
Problem domain elements variables fmax frms .fmax .frms fmax frms fmax frms 

Number of 
Sub- of interface Original 

- 
CEGB3024 

CEGB3306 

LOCK2232 

LOCK3491 

1 
2 
3 
4 
5 
6 
7 
8 
1 
2 
3 
4 
1 
2 
3 
4 
5 
6 
7 
8 
1 
2 
3 
4 

67 
66 
65 
71 
72 
74 
69 
67 

199 
197 
197 
198 
117 
118 
118 
117 
117 
117 
123 
117 
148 
179 
176 
181 

74 
82 
90 
42 
46 
66 

112 
72 

114 
120 
108 
102 
150 
120 
108 
90 

120 
78 
48 

162 
108 
161 
199 
210 

112 88.5 
92 62.4 

128 100.3 
98 751 

102 73.4 
98 77-7 

134 95.1 
106 86-5 
186 136.8 
258 189.7 
210 172.1 
222 170.5 
276 198.9 
294 216.9 
246 193.7 
234 167-0 
210 164.2 
300 211.0 
246 159.6 
300 216.4 
171 134-9 
318 219.6 
428 289.8 
294 223.8 

108 
104 
96 
88 
72 
80 

144 
90 

138 
126 
114 
126 
156 
144 
126 
138 
138 
126 
102 
186 
234 
276 
297 
210 

76.7 
77-2 
75.0 
66.4 
52  1 
58.7 
98.4 
69.3 

112.8 
72.8 
66-1 
87.5 

101.7 
108.8 
94.6 

1 00.0 
100.7 
93.8 
76.4 

124.6 
188.2 
20 1 .o 
200.2 
118.5 

84 
92 
96 
68 
76 
80 

126 
86 

120 
126 
114 
108 
156 
138 
126 
108 
138 
120 
78 

168 
171 
167 
232 
186 

67.1 
62.4 
73.9 
430 
60  1 
56.7 
906 
700 
86.6 
66.4 
628 
62.6 

103.5 
105 1 
85.3 
69.7 
95.3 
9 0  1 
52.2 

110.6 
134.9 
102.9 
141.9 
1157 

80 60-4 
92 62.4 
92 72.7 
62 39-5 
63 48-0 
78 47-7 

118 86-4 
80 64.9 

122 58-1 
126 59.7 
114 58.5 
109 56-7 
156 93.5 
126 83-7 
114 76.4 
96 47.8 

126 66.3 
84 62-0 
66 44.1 

168 93.5 
147 119-3 
167 124.7 
230 138.5 
176 130.1 

Table IV(b). A comparison of the original, MC43, Approach I, and Approach I1 element orderings for the AEAT 
test problems 

Number 

Problem domain elements 
Sub- of 

AEAC5081 1 48 
2 50 
3 53 
4 49 
5 49 
6 49 
7 50 
8 49 
9 49 

10 50 
11 50 
12 51 
13 51 
14 54 
15 50 
16 48 

RFLOWl 1 740 
2 575 
3 400 

Number 

MC43 Approach I interface Original 
variables f i x  fims jinax frms fmax fims 

139 149 113.8 149 113.8 149 113.8 
152 165 124.1 165 124.1 165 1241 
76 79 62.8 79 58.9 79 56.4 

154 164 124.4 164 1099 164 1098 
154 157 134.3 164 109.1 164 109.8 
133 136 102.6 136 102.6 136 1026 
110 120 85.4 120 854 120 854 
119 122 100.6 122 100.6 136 95.8 
119 129 108.0 129 108.0 129 108.0 
110 141 106.8 141 106.8 134 105.1 
119 129 109.6 129 109.6 129 1001 
90 100 72.1 131 91.1 100 72.1 
90 129 111-0 121 89.0 121 80.4 
76 123 102.5 82 56.3 79 53.5 

138 141 98-4 141 98.4 141 984 
139 149 112.8 149 112.8 149 112.8 
668 698 438.9 678 474.3 698 438.9 

1149 1462 929.8 1456 869.4 1456 869.1 
783 827 501.6 827 487-2 827 486.8 

or 
Approach I1 

f i x  fims 

142 109.0 
169 117-4 
79 53-2 

164 106.0 
164 106.8 
136 85-4 
120 85.4 
136 94-0 
136 94-0 
127 88.7 
129 85.6 
100 71.7 
100 71.7 
79 49-5 

141 98.4 
142 1M-0 
672 392-8 

1468 747-1 
815 412.4 



ELEMENT RESEQUENCING FOR USE WITH A MULTIPLE FRONT ALGORITHM 4015 

Table IV(c). A comparison of the original, MC43, Approach I, and Approach I1 element orderings for the DNVR 
test problems 

Number 

MC43 Approach I Approach I1 
Problem domain elements variables fmax frms fmax frms fmax frms fmax frms 

Number of 
Sub- of interface Original 

OPT1 1 
2 
3 
4 

TRDHEIM 1 
2 
3 
4 
5 
6 
7 
8 

TSYL201 1 
2 
3 
4 
5 
6 
7 
8 

243 
236 
244 
254 
101 
102 
101 
101 
102 
102 
102 
102 
120 
120 
120 
120 
120 
120 
120 
120 

904 1638 
533 1161 
590 1362 
889 1479 
180 216 
216 336 
174 306 
258 414 
192 300 
210 246 
66 150 

108 234 
543 651 
582 633 
732 915 
582 633 
576 759 
582 708 
732 768 
582 633 

1206.2 
800.9 

1104.1 
1169.7 
174.4 
227.3 
231.5 
301-7 
251.1 
203.8 
109.7 
193.4 
505.2 
477.1 
688.4 
477.1 
558.7 
644.7 
582.3 
477.1 

941 
539 
967 

1016 
282 
414 
324 
360 
300 
246 
150 
234 
594 
708 
753 
708 
597 
633 
753 
708 

692.5 
311-4 
693.4 
801.1 
206.2 
328.0 
225.5 
270.2 
251.1 
203.8 
109.7 
193.4 
448.7 
5 12.3 
533.3 
512.3 
472.6 
548.9 
530.7 
5 12.3 

925 
539 
876 
979 
216 
228 
210 
366 
294 
246 
150 
156 
564 
603 
753 
603 
597 
603 
753 
603 

497.4 
539 
692.1 
7601 
174-4 
166.2 
156.8 
214.0 
238.7 
203.8 
106.7 
111-1 
455.0 
409.0 
523.7 
409.0 
477.1 
409.0 
512-5 
409.0 

925 
304.2 
602 
952 
216 
228 
294 
306 
240 
246 
162 
150 
5 64 
603 
753 
603 
597 
603 
753 
603 

479-1 
313.7 
369.7 
788.0 
174-4 
153.6 
165.8 
191-5 
180.1 
203.8 
104.6 
107-8 
441.5 
409.0 
515-2 
409.0 
441-2 
409.0 
519.3 
409.0 

TableIV(d). A comparison of the original, MC43, Approach I, and Approach I1 element orderings for the 
RALPAR test problems 

Number 

MC43 Approach I Approach I1 
Problem domain elements variables f i x  frms fmax frms fmax fims f i x  fims 

Number of 
Sub- of interface Original 

JETN 1 90 
2 90 
3 90 
4 90 

CHAM 1 1383 
2 1383 
3 1384 
4 1384 
5 1384 
6 1384 
7 1384 
8 1384 

TUBU 1 5861 
2 5861 
3 5862 
4 5862 

61 
61 
77 
57 

342 
403 
395 
489 
505 
373 
529 
513 
296 
430 
69 1 
736 

93 
81 

114 
96 

449 
640 
484 
571 
565 
490 
610 
595 
707 
657 

1740 
1179 

62.2 
58-9 
81.6 
69.8 

372.0 
486.7 
406.1 
44 1 .O 
450.8 
404.7 
503.4 
461.0 
534.7 
477.0 

1306.6 
978.6 

65 
63 
95 
84 

377 
419 
454 
575 
585 
420 
58 1 
548 
540 
759 

1017 
916 

47.6 
45.7 
75.7 
59.5 

278.4 
301.2 
319.1 
391.6 
398.8 
294.2 
386.8 
378.3 
367 1 
551.1 
789.3 
7340 

64 
63 
77 
64 

397 
418 
462 
546 
547 
385 
572 
577 
540 
47 1 
743 
739 

46.3 
44.8 
46-8 
47.1 

287.5 
303-8 
318.1 
372.3 
370-0 
288.7 
393.7 
384.4 
362-2 
3178 
599.7 
451.1 

65 
62 
80 
57 

343 
410 
446 
549 
512 
374 
530 
514 
536 
556 
725 
737 

44.9 
43-2 
49.4 
39.7 

259-8 
275.0 
309.8 
368.7 
357.0 
257.4 
369.1 
364-1 
353-7 
338.8 
541.9 
386.0 



Table V. CPU times (seconds) for reordering the elements together with floating-point operation counts (flops) and CPU times (seconds) 
for solving the test problems using the multiple front algorithm 

Original MC43 Approach I Approach I1 

Solve Reorder Solve Reorder Solve Reorder Solve 
Total CPU CPU Total CPU CPU Total CPU CPU Total CPU 

Problem flops time time flops time time flops time time flops time + 
CEGB3024 
CEGB3306 
LOCK2232 
LOCK349 1 
AEAC508 1 
RFLOWl 
OPT1 
TRDHEJM 
TSYL201 

3-70E + 07 
142E + 08 
1.44E + 08 
3.62E + 08 
1 4 E  + 08 
8.98E + 09 
3.46E + 10 
1.24E + 09 
1.40E + 10 

0-82 
1.69 
1.46 
3.31 
2.4 1 

54.01 
148.70 
12.56 
6954 

0-07 
0.07 
010 
0.09 
0.14 
0.14 
0.29 
0.22 
027 

2.75E + 07 0.76 008 
4.97E + 07 0.90 0.08 
4.65E + 07 090 011 
2.13E + 08 2.21 0.10 
1.34E +08 2-32 018 
8.08E + 09 51-30 0.18 
1.39E + 10 66.27 0.36 
1.40E + 09 13.23 029 
1.12E + 10 6212 0.34 

2.34E + 07 071 0.08 
3.39E + 07 0.81 0-08 
3.75E + 07 0-85 0.12 
1.093 + 08 1.67 0.10 
1.30E +08 2.31 017 
7.98E + 09 50.42 0-21 
1.12E + 10 57.81 039 
8.17E + 08 10.49 0.28 
9.79E +09 5352 034 

? 

8 2.043 + 07 0.69 
2393 +07 0-74 
2.483 + 07 0.75 
1.14E + 08 1.70 
1.123 + 08 2.20 
6853+09 44-21 
8.613 + 09 47.94 
6.953 + 08 9.85 
9.573 + 09 52.19 

3 



ELEMENT RESEQUENCING FOR USE WITH A MULTIPLE FRONT ALGORITHM 4017 

Table VI. The sensitivity of Approach I1 to the priority function 
weights W1,  W 2 ,  W 3  

Weights TUBU RFLOWl 
W1 W 2  W 3  Subdomain fmax frms f i x  frms 

12 6 1 

10 5 1 

12 6 2 

12 6 0 

2 1  2 

1 0  0 

0 1  0 

1 1  1 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 

536 
556 
725 
737 

544 
558 
72 1 
744 

538 
449 
749 
807 

593 
539 
740 
137 

592 
657 
942 
792 

707 
476 
822 
825 

707 
657 

1740 
1179 

620 
657 
885 
800 

353.8 
338-8 
542.0 
386.1 

3545 
348-0 
542.2 
390.5 

359.1 
318.5 
552.6 
401.7 

380.0 
353.8 
544.7 
387.7 

447.2 
477.0 
724.1 
431.7 

534.7 
346.1 
588.5 
407.2 

534.7 

1306-6 
978.7 

438.5 
477.0 
640.9 
427.8 

477.0 

672 
1468 
815 

672 
1468 
815 

672 
1468 
815 

672 
1462 
815 

612 
1468 
818 

672 
1468 
815 

698 
1462 
827 

672 
1468 
818 

392.4 
747-1 
412.3 

392.4 
747.1 
412.3 

392.6 
747.6 
412.3 

391.8 
748-8 
501.6 

400.1 
764.0 
414.5 

392.4 
750.0 
412.3 

438.9 
930.0 
501.6 

399.2 
763.1 
413.6 

We remark that we found the Chaco code was well able to partition the finite-element domains 
into subdomains having an (approximately) equal number of elements. The Chaco code attempts 
to minimise the total number of interface variables and this will reduce both the amount of data 
which must be transferred between processors when the multiple front algorithm is run in parallel 
and the amount of work needed to solve the interface problem. However, Chaco can produce 
partitions in which the subdomains all have a very different number of interface variables and this 
can lead to a wide variation in the subdomain frontsizes and hence to poor load balancing when 
the multiple front algorithm is implemented in a parallel environment. Consider the test problem 
TRDHEIM. We partitioned the domain into 8 subdomains using Chaco and found that each 
subdomain had 101 or 102 elements but the number of interface variables ranged from 66 for 



4018 J. A. SCOTT 

subdomain 7 to 258 for subdomain 4 (Table IV(c)). After reordering the elements with Approach 
11, the number of floating-point operations required by the frontal solver for these two subdo- 
mains were 3-33*107 and 1.12*1OS, respectively. If all 8 processors on the CRAY Y-MP8I are used 
to solve the problem (one for each subdomain), processor 7 completes its work in 0.93 s while 
processor 4 takes 1-30 s. Domain partitioning algorithms which attempt to balance the number of 
interface variables between subdomains are required for the multiple front algorithm and we plan 
to investigate this in the future. 

In Table VI we illustrate the sensitivity of Approach I1 to the choice of the weights used in the 
priority function (8). Results are given for test problems TUBU (4 subdomains) and RFLOWl 
(3 subdomains). For each subdomain, the smallest r.m.s. frontsizes are in bold typeface. These two 
problems were selected since they illustrate that for some subdomains the element ordering can be 
sensitive to the choice of weights, while other subdomains are much less sensitive. We see that the 
maximum and r.m.s. frontsizes for subdomain 1 of RFLOWl are relatively insensitive to the 
changes in the weights we considered. However, for subdomain 3 we see that setting W3 equal to 
0 leads to much larger frontsizes and this illustrates the importance of including the third weight 
in the priority function. For problem TUBU, small changes to the recommended values of 12,6, 
and 1 for W1, W 2 ,  and W 3 ,  respectively, have some effect on the frontsizes but the effects are 
small. However, for this problem, making substantial changes to the ratios between the weights 
(such as giving the weights equal values) results in significant increases in the frontsizes in some of 
the subdomains. 

7. CONCLUSIONS 

In this study we have proposed two algorithms for reordering elements for use with a multiple 
front algorithm. This problem is more complicated than the problem of resequencing elements for 
a frontal solver on a single domain since it is necessary to distinguish between variables which can 
be eliminated once they are fully summed and interface variables that cannot be eliminated within 
the subdomain. The two approaches we have considered involve two different ways of locating 
a suitable starting element s for the reordering procedure. Once a starting element has been 
selected, both methods use a modification of the method of Sloanlo to reorder the remaining 
elements. Our first method (Approach I) for choosing s is based on finding pseudo-peripheral 
nodes of the element communication graph. The second method (Approach 11), introduces an 
artificial element, the guard element, and uses this extra element to find an element lying as far 
from the interface boundary as possible and uses this to start the reordering. We have tested both 
approaches on a range of problems and compared their performance with that of the HSL code 
MC43, which is designed for single domain problems. Both approaches give significant improve- 
ments over MC43 and Approach I1 was almost always the method of choice. On the basis of our 
findings, a code MC53 implementing Approach I1 has been developed and is included in the 
Harwell Subroutine Library.” Since we saw from TableVI that the quality of the element 
ordering can be dependent on the weights used in the priority function, these weights are passed 
to MC53 as control parameters. They are given the default values of 12,6, and 1 (which are the 
values we recommend on the basis of our numerical experiments) but the user may choose to reset 
one or more of these values. 

7.1. Availability of the code 

The codes MA42, MA52, MC43, and MC53 are all written in standard FORTRAN 77 and are 
included in the current release of the Harwell Subroutine Library.’ Anyone interested in using 



ELEMENT RESEQUENCING FOR USE WITH A MULTIPLE FRONT ALGORITHM 4019 

HSL routines should contact the HSL Manager: Dr. S. J. Roberts, Harwell Subroutine Library, 
AEA Technology, Building 552, Harwell, Oxfordshire, OX11 ORA, England, tel. +44(0) 1235 434714, 
fax +44(0) 1235 434136, or e-mail Scott.Roberts@aeat.co.uk, who will provide details of price 
and conditions of use. 

ACKNOWLEDGMENTS 

I would like to thank Andrew Cliffe, Christian Damhaug, and Ron Fowler for supplying me with 
some of the test problems used in this study. I am also grateful to Iain Duff of the Rutherford 
Appleton Laboratory for his interest and to Alex Pothen of Old Dominion University for some 
interesting email discussions. 

REFERENCES 

1. 9. M. Irons, ‘A frontal solution program for finite-element analysis’, Int. j .  numer. methods eng., 2, 5-32 (1970). 
2. P. Hood, ‘Frontal solution program for unsymmetric matrices’, lnt. j. numer. methods eng., 10, 379-400 (1976). 
3. I. S. Duff, ‘Enhancements to the MA32 package for solving sparse unsymmetric matrices’, Harwell Report AERE 

4. J. E. Akin and R. M. Pardue, ‘Element resequencing for frontal solutions’, in J. R. Whiteman (ed.), Mathematics of 

5. A. Bykat, ‘A note on an element ordering scheme’, Int. j. numer. methods eng., 11, 194-198 (1977). 
6. A. Razzaque, ‘Automatic reduction of frontwidth for finite element analysis’, 1nt. j. numer. methods eng., 15,1315-1324 

7. H. L. Pina, ‘An algorithm for frontwidth reduction’, lnt .  j .  numer. methods eng., 17, 1539-1546 (1981). 
8. S. W. Sloan and M. F. Randolph, ‘Automatic element reordering for finite-element analysis with frontal schemes’, Int. 

9. S. J. Fenves and K. H. Law, ‘A two-step approach to finite element ordering’, Int. j. numer. methods eng., 19,891-91 1 

10. S. W. Sloan, ‘An algorithm for profile and frontsize reduction of sparse matrices’, Int. j. numer. methods eny., 23, 

11.  M. S. Shephard, P. L. Baehmann and K. R. Griece, ‘The versatility of automatic mesh generators based on tree 

12. I. S. Duff, J. K. Reid and J. A. Scott, ‘The use of profile algorithms with a frontal code’, In t .  j .  nurner. methods eng., 28, 

13. A. Kaveh, ‘A connectivity coordinate system for node and element ordering’, Comput. Struct., 41, 1217-1223 (1991). 
14. 9. U. Koo and 9. C. Lee, ‘An efficient profile reduction algorithm based on the frontal ordering scheme and graph 

theory’, Cornput. Strurt., 44, 1339-1347 (1992). 
15. S. R. P. Medeiros, P. M. Pimenta and P. Goldenberg, ‘An algorithm for profile and frontsize reduction of sparse 

matrices with a symmetric structure’, Eng. Cornput., 10, 257-266 (1993). 
16. G. H. Paulino, I. F. M. Menezes, M. Gattass and S. Mukherjee, ‘Node and element resequencing using the Lapladan 

of a finite element graph: part I-general concepts and algorithm’, In t .  j .  numer. methods eng., 37, 151 1-1530 (1994). 
17. 1. S. Duffand J. A. Scott, in J. Lewis (ed.), Proc. 5th SIAM Conf on Applied Linear Algebra, SlAM Press, Philadelphia, 

R11009, HMSO, London, 1983. 

Finite Elements and Applications, Academic Press, New York, 1975. 

(1980). 

j .  numer. methods eng., 19, 1153-1181 (1983). 

(1 983). 

239-251 (1986). 

structures and advanced geometric constructs’, Commun. appl. numer. methods, 4, 379-392 (1988). 

2555-2568 (1989). 

. .  .. 

PA, 1994, pp. 567-571. 
18. 1. S. Duff and J. A. Scott, T h e  use. of multiple fronts in Gaussian elimination’, Rutherford Appleton Laboratory Report 

RAL-94-040, 1994. 
19. Harwell Subroutine Library, ‘A catalogue of subroutines (Release 12)’, Advanced Computing Department, Harwell 

20. I. S. Duff and 1. A. Scott, ‘MA42-a new frontal code for solving sparse unsymmetric systems’, Rutherford Appleton 

21. I. S .  Duff and J. A. Scott, ‘The design of a new frontal code for solving sparse unsymmetric systems’, ACM Trans. 

22. N. E. Gibbs, ‘A hybrid profile reduction algorithm’, ACM Trans. Marh. Sofw., 2, 378-387 (1976). 
23. N. E. Gibbs, W. G. Poole Jr. and P. K. Stockmeyer, ‘An algorithm for reducing the bandwidth and profile of a sparse 

24. A. George and W. H. Liu, ‘An implementation of a pseudoperipheral node finder’, ACM Trans. Math. Sofw., 5 ,  

25. I. S. Duff, R. G. Grimes and J. G. Lewis, ‘Sparse matrix test problems’, ACM Trans. Math. Sufw., IS, 1-14 (1989). 
26. I. S. Duff, R. G. Grimes and J. G. Lewis, ‘User’s Guide for the Harwell-Boeing Sparse Matrix Collection’, Rutherford 

Laboratory, Oxfordshire, England. 

Laboratory Report RAL-93-064, 1993. 

Math. Softw., 22, 30-45 (1996). 

matrix’, SIAM J. Numer. Anal., 13, 236-250 (1976). 

284-295 (1979). 

Appleton Laboratory Report RAL-92-086, 1992. 



4020 J. A. SCOTT 

27. R. E. Benner, G. R. Montry and G. G. Weigand, ‘Concurrent multifrontal methods: shared memory, cache, and 

28. C. Farhat, ‘A simple and efficient automatic FEM domain decomposer’, Comput. Struct., 28, 579-602 (1998). 
29. J. G. Malone, ‘Automatic mesh decomposition and concurrent finite element analysis for hypercube multiprocessor 

30. B. Keringhan and S. Lin, ‘An efficient heuristic procedure for partitioning graphs’, Bell System Tech. J., 29, 291-307 

31. H. D. Simon, ‘Partitioning of unstructured problems for parallel processing’, in Proc. Conf: on Parallel Methods on 

32. R. D. Williams, ‘Performance of dynamics load balancing algorithms for unstructured mesh calculations’, Concur- 

33. A. Pothen, H. D. Simon and K. P. Liou, ‘Partitioning sparse matrices with eigenvectors of graphs’, SIAM J. Matrix 

34. B. Hendrickson and R. Leland, ‘An improved spectral graph partitioning algorithm for mapping parallel computa- 

35. B. Hendrickson and R. Leland, ‘A multilevel algorithm for partitioning graphs’, Technical Report SAND93-1301, 

36. C. Greenough and R. F. Fowler, ‘Partitioning methods for unstructured finite element meshes’, Rutherford Appleton 

37. C. Greenough and R. F. Fowler, ‘RALPAR-The RAL mesh partitioning program’, Rutherford Appleton Loboratory 

38. B. Hendrickson and R. Leland, ‘The Chaco user’s guide, version 1 0 ,  Technical Report SAND92-2339, Sandia 

39. J. J. Dongarra, J. J. Du Croz, I. S. Duff and S. Hammarling, ‘A set of Level 3 Basic Linear Algebra Subprograms’, 

40. I. S .  Duff and J. K. Reid, ‘The multifrontal solution of indefinite sparse symmetric linear systems’, ACM Trans. Math. 

41. W. P. Zhang and E. M. Liu, ‘A parallel frontal solver on the Alliant FX/80’, Comput. Struct., 38, 203-215 (1991). 
42. A. Kaveh, ‘A note on a two-step approach to element ordering’, Int. j .  numer. methods eng., 20, 1553-1554 (1984). 

frontwidth issues’, Int .  J .  Supercomput. Appl., 1, 26-44 (1987). 

computer’, Comput. Methods Appl. Mech. Eng., 70, 20-58 (1998). 

(1970). 

Large Scale Structural and Physics Applications, Pergamon Press, Oxford, 199 1. 

rency, Practice, Experience, 3, 457-482 (1991). 

Anal. Appl., 11, 430-452 (1990). 

tions’, Technical Report SAND92-1460, Sandia National Laboratories, 1992. 

Sandia National Laboratories, 1993. 

Laboratory Report RAL-94-091,1994. 

Report RAL-94-092, 1994. 

National Laboratories, 1993. 

ACM Trans. Math. Sojlware, 16, 1-17 (1990). 

Software, 9, 302-325 (1983). 


