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Abstract

The solution of chemical process engineering problems often requires the repeated solution of large sparse linear systems of
equations that have a highly asymmetric structure. The frontal method can be very efficient for solving such systems on modern
computer architectures because, in the innermost loop of the computation, the method exploits dense linear algebra kernels, which
are straightforward to vectorize and parallelize. However, unless the rows of the matrix can be ordered so that the frontsize is
never very large, frontal methods can be uncompetitive with other sparse solution methods. We review a number of row ordering
techniques that use a graph theoretical framework and, in particular, we show that a new class of methods that exploit the row
graph of the matrix can be used to significantly reduce the front sizes and greatly enhance frontal solver performance.
Comparative results on large-scale chemical process engineering matrices are presented. © 2000 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

In large-scale chemical process simulation the most
computationally expensive step is generally the solution
of large sparse systems of linear equations. The basic
idea is to model the chemical process by a single very
large nonlinear system of equations, with many thou-
sands of variables. These equations are then solved
using some variant of Newton’s method. In the case of
dynamic simulation, Newton’s method (or variant) is
applied at each time step. The use of Newton’s method
involves solving many systems of linear equations hav-
ing the same sparsity structure. Solving the linear sys-
tems can represent over 80% of the total computational
cost on industrial problems (for example, Zitney, Brull,
Lang & Zeller, 1995) and so it needs to be done as
efficiently as possible. Any reduction in the linear sys-
tem solution time will result in a significant saving in
the total simulation time, allowing the solution of prob-
lems which would otherwise be intractable, as well as
potentially enabling larger problems to be solved in a
given time frame.

Unfortunately, process simulation matrices do not
possess any desirable structural or numerical properties
such as symmetry, positive definiteness, diagonal domi-
nance, or bandedness, that are often associated with
sparse matrices and are exploited in the development of
efficient algorithms for the solution of sparse linear
systems. The frontal method can be used to solve
general sparse linear systems and work by Vegeais and
Stadtherr (1990) and Zitney and Stadtherr (1993) has
demonstrated the potential of the method for process
simulation problems. A key feature of the frontal
method is that, in the innermost loop of the computa-
tion, dense linear algebra kernels can be exploited.
These are straightforward to vectorize and parallelize
and are able to exploit high level BLAS kernels (Don-
garra, DuCroz, Duff & Hammarling, 1990). This makes
the method attractive for a wide range of modern
computer architectures, including RISC based proces-
sors and shared memory parallel processors. However,
the performance of the frontal method is highly depen-
dent on the ordering of the rows of the matrix. The
natural unit-block structure of process engineering
problems can sometimes provide a reasonable ordering,
and this has allowed the frontal method to be used with
some success on these problems (Zitney & Stadtherr,
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1993). But for many problems the natural ordering can
be improved on. Furthermore, in most commercial
software, unit-block structure information is not avail-
able to the linear system solver. Thus a general ap-
proach to reordering is needed. In this paper we review
row ordering strategies and, in particular, show that the
new class of methods introduced in a recent paper by
Scott (1999) can yield substantial improvements in the
performance of the frontal method for chemical process
engineering problems.

This paper is organised as follows. In Section 2, we
provide some background information on the frontal
method and recall elementary concepts from graph
theory that are useful in developing matrix ordering
schemes. In Section 3, we review row ordering strategies
that have been used in recent years for chemical pro-
cessing problems. The new MSRO algorithms of Scott
(1999) that exploit row graphs are described in Section
4. In Section 5, numerical results comparing the perfor-
mance of the different approaches and their use with
frontal solvers are presented. The design of a new
library code MC62 that implements the MSRO al-
gorithm is discussed briefly in Section 6 and, finally,
some concluding remarks are made and future direc-
tions considered in Section 7.

2. Background

2.1. The frontal method

The frontal method is a technique for the direct
solution of linear systems

Ax=b, (2.1)

where the n×n matrix A is large and sparse. Although
the method was originally developed in the 1970s for
the solution of finite-element problems in which A is a
sum of elemental matrices (see Irons, 1970; Hood,
1976), it can be used to solve any general linear system
of equations (Duff, 1981, 1984). The frontal method is
a variant of Gaussian elimination that involves comput-
ing the decomposition of a permutation of A

PAQ=LU,

where L is unit lower triangular and U is upper triangu-
lar. The system (2.1) can be solved by a simple forward
substitution

Ly=Pb,

followed by a back substitution

Uz=y.

The required solution

x=Qz

follows. At each stage of the matrix factorization, only
a subset of the rows and columns of A needs to be held
in main memory, in a matrix termed the frontal matrix.
The rows of A are assembled into the frontal matrix in
turn. Column l is defined as being fully summed once
the last row with an entry in column l has been
assembled. A column is partially summed if it has an
entry in at least one of the rows assembled so far but is
not yet fully summed. Once a column is fully summed,
partial pivoting is performed to choose a pivot from
that column.

In general, the frontal matrix F is a rectangular
matrix. The number of rows and columns in the frontal
matrix (the row and column frontsizes) depends upon
the number of rows of A that have been assembled and
the number of eliminations that have been performed.
Assuming there are k fully summed columns (with
k]1) and assuming the rows of F have been permuted
so that the pivots lie in positions (1,1), (2,2), …, (k,k),
the frontal matrix can be written in the form

F= (F1 F2), F1=
�F11

F21

�
, F2=

�F12

F22

�
(2.2)

where F11 is of order k×k. The columns of F1 are fully
summed while those of F2 are partially summed. If F12

is of order k×m and F21 is of order l×k, the row and
column frontsizes are k+ l and k+m, respectively. F11

is factorized as L11U11. Then F21 and F12 are updated as

L21=F21U11
−1 and U12=L11

−1F12 (2.3)

and then the Schur complement

F22−L21U12 (2.4)

is formed. Finally, the factors L11 and U11, as well as
L12 and U21, are stored as parts of L and U, before
further rows from the original matrix are assembled
with the Schur complement to form another frontal
matrix.

The power of frontal schemes comes from the fact
that they are able to solve quite large problems with
modest amounts of main memory and the fact that they
are able to perform the numerical factorization using
dense linear algebra kernels; in particular, the Level 3
Basic Linear Algebra Subprograms (BLAS) (Dongarra
et al., 1990) may be used. For example, the BLAS
routine GEMMwith interior dimension k can be used to
form the Schur complement (2.4).

Since a variable can only be eliminated after its
column is fully summed, the order in which the rows
are assembled will determine both how long each vari-
able remains in the front and the order in which the
variables are eliminated. For efficiency, in terms of both
storage and arithmetic operations, the rows need to be
assembled in an order that keeps both the row and
column frontsizes as small as possible. If frow i and
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fcol i denote the row and column frontsizes before the
ith elimination, we are interested in

� the maximum row and column frontsizes

frow i max
15 i5n

and max
15 i5n

fcol i (2.5)

since these determine the amount of main memory
needed,
� the mean row and column frontsizes

1
n

%
n

i=1

frow i and
1
n

%
n

i=1

fcol i (2.6)

since these provide a measure of the factor storage
� the mean frontal matrix size

favg=
1
n

%
n

i=1

( frow i× fcol i). (2.7)

A prediction of the number of floating-point opera-
tions that must be performed can be obtained from
(2.7) (assuming zeros within the frontal matrix are not
exploited).

Because reordering aims to reduce the length of time
each variable is in the front, we also define the lifetime
of a variable. For a given ordering, the lifetime Life i

of variable i is defined to be last i−first i, where
first i and last i are the assembly step when variable i
enters and leaves the front, respectively. That is,

Life i=
!

max
15k,l5n

�l−k � : aki"0 and ali"0
"

(2.8)

Camarda (1997) uses the sum of the lifetimes to com-
pare the quality of different row ordering strategies: a
small value for the sum of the lifetimes is used to
indicate a good ordering.

We observe that, if A has a full row, the maximum
column frontsize will be n, irrespective of the order in
which the rows of A are assembled. Similarly, if A has
one or more rows that are almost full, the maximum
column frontsize will be large. Clearly, the frontal
method is not a good choice for such systems.

Throughout this paper, we shall be concerned only
with running the frontal method on a single processor.
Different ordering strategies should be considered when
implementing a frontal algorithm in parallel. This is
discussed, for example, by Camarda (1997), Mallya,
Zitney, Choudhary, and Stadtherr (1997b), Mallya, Zit-
ney, Choudhary and Stadtherr (1999) and Camarda
and Stadtherr (1999), and, for element problems, by
Scott (1996), and remains a subject for further
investigation.

2.2. Graphs and matrices

Before looking at row ordering algorithms for frontal
solvers, it is convenient to recall some basic concepts
from graph theory.

A graph G is defined to be a pair (V(G), E(G)),
where V(G) is a finite set of nodes (or 6ertices) 61,62, …,
6n and E(G) is a finite set of edges, where an edge is a
pair (6i, 6j) of distinct nodes of V(G). If no distinction
is made between (6i, 6j) and (6j, 6i) the graph is undi-
rected, otherwise it is a directed graph or digraph. A
labelling (or ordering) of a graph G= (V(G), E(G))
with n nodes is a bijection of {1, 2, 5 …, n} onto V(G).
The integer i (15 i5n) assigned to a node in V(G) by
a labelling is called the label (or number) of that node.
Two nodes 6i and 6j in V(G) are said to be adjacent (or
neighbours) if (6i, 6j)�E(G). The degree of a node
6i�V(G) is defined to be the number of nodes in V(G)
which are adjacent to 6i, and the adjacency list for 6i is
the list of these adjacent nodes. A path of length k in G
is an ordered set of distinct nodes (6i 1

, 6i 2
, …, 6ik+1

)
where (6ij 6ij+1

)�E(G) for 15 j5k. Two nodes are con-
nected if there is a path joining them. An undirected
graph G is connected if each pair of distinct nodes is
connected. Otherwise, G is disconnected and consists of
two or more components. In the following, we assume
that the graphs we use are connected. If not, it is
straightforward to apply the algorithms to each compo-
nent of the graph.

We can now establish the relationship between
graphs and matrices. A labelled graph GA with n nodes
can be associated with any square matrix A={aij} of
order n. Two nodes i and j (i" j ) are adjacent in the
graph if and only aij is nonzero. If A has a symmetric
sparsity pattern, GA is undirected, otherwise GA is a
digraph.

3. Row ordering strategies

In recent years, a number of algorithms for automat-
ically ordering matrices for frontal solvers have been
proposed. In this section and the next, we briefly review
these different strategies. Numerical results for the most
promising approaches are included in Section 5.

3.1. Profile reduction algorithms

The graph of a symmetric matrix is unchanged if a
symmetric permutation is performed on the matrix;
only the labelling of its nodes changes. Many profile
and bandwidth reduction algorithms for sparse sym-
metric matrices exploit the close relationship between
the matrix and its undirected graph (for example, the
algorithms of Cuthill and McKee, 1969 and Sloan,
1986). If the matrix A is numerically unsymmetric but
has a symmetric sparsity pattern, an appropriate order-
ing of the rows for a frontal solver can be obtained
using one of these profile reduction algorithms. The use
of these algorithms can be extended to obtain orderings
for unsymmetric matrices by applying them to the
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sparsity pattern of A+AT. For matrices with an almost
symmetric pattern, good orderings can generally be
obtained using this approach (see, for example, Scott,
1999). But for highly asymmetric matrices, such as
those that occur in process simulation, using the struc-
ture of A+AT does not yield useful results. This is
because the number of entries in A+AT is almost twice
that in A, indicating a large number of dependencies
are introduced that do not exist in the actual problem.

3.2. P4 approach

For frontal methods, an upper triangular form may
appear attractive because as each row enters the front,
a variable is immediately available for elimination. One
possible approach to reordering, therefore, is to use an
algorithm such as the partitioned preassigned pivot
procedure (P4) of Hellerman and Rarick (1972) for
reordering a highly asymmetric matrix to almost lower
triangular form and then to reverse the row order. This
was proposed by Stadtherr and Vegeais (1985). In his
thesis, Camarda (1997) reports that reverse P4 gives
inconsistent results in so much as, for some examples, it
can produce good orderings but for other problems, it
can yield orderings that are significantly worse than the
original ordering. Further results confirming this are
given by Camarda and Stadtherr (1998). This inconsis-
tency is possibly because the method places the rows
with the largest number of entries early in the ordering
which, in some cases, leads to a large column frontsize
for many elimination steps. The P4 method was not, of
course, developed with frontal solvers in mind. It is
clear that, for frontal methods, specially developed
algorithms are needed and, rather than a block triangu-
lar form, a variable band form is desirable.

3.3. RMCD ordering

The restricted minimum column degree (RMCD) or-
dering algorithm for reducing the size of the frontal
matrix was recently discussed by Camarda (1997) and
Camarda and Stadtherr (1998). This algorithm uses the
concept of a net. A net nl is defined to be a column l
and all the rows i such that ail is nonzero. This concept
is useful because when nl has been assembled, column l
is fully summed and an elimination can be performed.
At each stage of reordering, the degree of a column l is
the number of nonzero entries ail in the rows of A that
have not yet been reordered. The RMCD algorithm
stores the degree of each column and, at each stage,
chooses the column of minimum degree and assembles
all the rows in the net corresponding to the chosen
column into the frontal matrix. The column degrees are
then updated before the next column is selected. Rapid
determination of the column with minimum degree is
achieved through the use of linked lists. When the

degree of a column is updated, the column is placed at
the head of the linked list of columns of that degree.
Thus partially summed columns are given priority. A
simple example illustrating the RMCD algorithm is
given in Camarda and Stadtherr (1998).

In his numerical experiments, Camarda (1997) found
that the reordering time required by the RMCD al-
gorithm was generally small compared with the time
required by the subsequent numerical factorization of
the matrix and the method gave modest improvements
to the row ordering for a number of test examples from
a variety of application areas (see also Scott, 1999;
Camarda & Stadtherr, 1998). Results for process engi-
neering problems are included in Section 5.

3.4. RMNA ordering

The RMCD algorithm does not directly address the
growth of the column frontsize. Experimental data
reported by Scott (1999) shows that the reordered
matrix can have a column frontsize that is many times
that of the original matrix. To try and limit the column
frontsize, Camarda (1997) proposed the restricted mini-
mum net area (RMNA) algorithm. This algorithm is
related to the RCMD algorithm but, rather than look-
ing just at minimising the column degree when selecting
the next net to be assembled, the RMNA algorithm is
designed to restrict the additional area that will be
added to the frontal matrix upon the assembly of a net.
Specifically, at each stage, the RMNA algorithm
chooses the column for which the product of the
column degree and the net degree is a minimum, where
the degree of the net nl is defined to be the number of
independent columns with nonzeros in the rows of nl.
Priority is given to the net whose degree was most
recently updated.

The reported results of Camarda (1997) are disap-
pointing. They show that the orderings obtained using
the computationally more expensive RMNA algorithm
generally offers little or no improvement on those ob-
tained by the RCMD algorithm. It appears that the
degree of nl often provides a poor measure of the actual
growth in the column frontsize that results from select-
ing nl because of significant overlap between the
columns with nonzeros in the rows of nl and columns
already in the front.

3.5. NMNC ordering

The RMCD and RMNA algorithms are local heuris-
tic orderings: at each stage they choose the column that
minimises a function based on the column and net
degrees, without reference to effects on later stages. An
alternative is to use an approach based on global
heuristics, such as the recursive graph partitioning al-
gorithm introduced by Coon (1990) and Coon and
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Stadtherr (1995) as the Minimum Net Cut (MNC)
algorithm. The MNC algorithm is designed to order the
matrix to bordered block diagonal form. It starts with
a full transversal (zero-free diagonal) and employs row
and column interchanges that maintain a full transver-
sal. The bordered block diagonal form can be used to
implement the frontal method in parallel (see Mallya et
al., 1997b). Recently, Camarda (1997) simplified the
MNC algorithm. The so-called New Minimum Net Cut
(NMNC) algorithm removes the full transversal restric-
tion and, for the single processor frontal method, uses
only row interchanges.

To describe the NMNC algorithm we need to recall
the definition of the bipartite graph of a general square
matrix of order n. The bipartite graph of A consists of
two distinct sets of n nodes R and C, each set being
labelled 1,2, ..., n, together with E edges joining nodes
in R to those in C. There is an edge between i�R and
j�C if and only aij is nonzero. Here, �E � is the total
number of entries in A.

The goal of the NMNC algorithm is to find a parti-
tioning of the bipartite graph of A such that the num-
ber of nets cut by the partition is minimised, where the
net nl is said to be cut with respect to a partitioning of
the rows of the matrix if column l has nonzero entries
on both sides of the partition. The NMNC algorithm
recursively partitions the rows of the matrix, so that the
matrix is partitioned into two, then into four, and so
on. For each partitioning, the rows are sorted accord-
ing to their gain. The gain associated with moving a
row j from one partition to another is defined to be the
reduction in the net cut that results from the move. A
negative gain indicates a move that increases the net
cut. Rows that have been moved during the current
partitioning are locked for the remainder of that parti-
tioning. Two types of move are allowed: the first ex-
changes free (unlocked) rows between partitions, the
second moves a single row into the other partition.
Only moves with a positive gain are permitted. For
each level of the partitioning, moves continue until no
more rows can be moved.

The NMNC algorithm is more expensive to imple-
ment than the simple RMCD algorithm but the results
presented in the thesis of Camarda (1997) show that it
performs more consistently and can yield better order-
ings. This suggests that this method may be particularly
useful when several factorizations follow the initial
reordering.

4. Row graph ordering techniques

In the previous section, we considered both local and
global reordering schemes. In this section, we look at a
class of methods that use local ordering to refine a
global ordering.

4.1. Row graphs

For developing row permutations of unsymmetric
matrices, an alternative to using the digraph or the
bipartite graph, is to use a row graph. Row graphs were
first introduced by Mayoh (1965) and have recently
been used by Scott (1999) for developing row orderings
for frontal solvers.

The row graph GR of A is defined to be the undirected
graph of the symmetric matrix B=A�AT, where �
denotes matrix multiplication without taking cancella-
tions into account (so that, if an entry in B is zero as a
result of numerical cancellation, it is considered as a
nonzero entry and the corresponding edge is included
in the row graph). The nodes of GR are the rows of A
and two rows i and j (i" j ) are adjacent if and only if
there is at least one column k of A for which aik and ajk

are both nonzero. Row permutations of A correspond
to relabelling the nodes of the row graph.

4.2. The MSRO algorithm

The MSRO row ordering algorithms introduced by
Scott (1999) have their origins in the profile reduction
algorithm of Sloan (1986) for symmetric matrices. The
MSRO algorithms use the row graph and comprise two
distinct phases:
� selection of a global ordering
� row reordering.
Selecting an appropriate global ordering is discussed
below. The global ordering defines the global priority
of each row. The row with the lowest global priority is
chosen as the start row (that is, the row that is first in
the global ordering is ordered first in the new ordering).
In the second phase of the algorithm, the global order-
ing is used to guide the reordering. Rows with a high
global priority will be chosen towards the end of the
ordering.

A row is defined to be acti6e if it has not yet been
reordered but is adjacent in the row graph to a row that
has already been reordered. The MSRO algorithm aims
to reduce the row and column frontsizes by reducing
the number of rows that are active at each stage and
this is done by local reordering of the global ordering.
For each row i�GR, the MSRO algorithm computes the
priority function

Pi=W1�rcgain i+W2�gi. (4.1)

Here W1 and W2 are positive weights, gi is the (positive)
global priority for row i, and rcgain i=rgain i+
cgain i, where rgain i and cgain i are the increases to
the row and column frontsizes resulting from
assembling (ordering) row i next. Assembling a row
into the frontal matrix causes the row frontsize to either
increase by one, to remain the same, or to decrease.
The row frontsize increases by one if no
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columns become fully summed, it remains the same if a
single column becomes fully summed, and it decreases
if more than one column becomes fully summed. The
increase in the column frontsize is the difference be-
tween the number of column indices that appear in the
front for the first time and the number that become
fully summed. If this difference is negative, the column
frontsize decreases. Hence, if si is the number of
columns that become fully summed when row i is
assembled,

rgain i=1−si (4.2)

and

cgain i=newci−si, (4.3)

where newci is the number of new column indices in the
front. It follows that

rcgain i=1+newci−2si (4.4)

and this is minimised if row i brings a small number of
new columns into the front and results in a large
number of columns becoming fully summed.

The start row is ordered first then, at each stage, the
next row in the ordering is chosen from a list of eligible
rows to minimise Pi, with ties broken arbitrarily. The
eligible rows are defined to be those that are active
together with their neighbours. A list of eligible rows is
maintained using the connectivity lists for the row
graph. Thus, the MSRO algorithm attempts to keep a
balance between having only a small number of rows
and columns in the front and including rows that have
a low global priority. The balance is determined by the
choice of weights (see Section 4.4).

We note that the MSRO scheme has more freedom
when choosing the next row to be assembled than the
RCMD and RMNA algorithms. Once a column has
been selected, the RCMD and RMNA algorithms as-
semble all the rows with nonzeros in that column, so
that a block of rows rather than a single row is chosen
at once. The MSRO approach selects one row and
then, when choosing the next row, takes into account
the effect of the previous choices.

4.3. The global ordering

The success of the MSRO algorithm is dependent
upon first computing an appropriate global ordering.
We consider three possible choices: the pseudodiameter,
the spectral ordering, and the NMNC ordering.

4.3.1. The pseudodiameter
The distance between nodes i and j in an undirected

graph G is denoted by d(i, j), and is defined to be the
number of edges on the shortest path connecting them.
The diameter D(G) of G is the maximum distance
between any pair of nodes. That is,

D(G)=max{d(i, j) : i, j�V(G)}. (4.5)

A pseudodiameter d(G) is defined by any pair of nodes
i and j in V(G) for which d(i, j) is close to D(G).
Experience has shown that the ends of a pseudodiame-
ter provide good candidates for the starting nodes for
profile and wavefront reduction algorithms and for
bandwidth reduction algorithms (see, for example,
Gibbs, 1976; Gibbs, Poole & Stockmeyer, 1976; Sloan,
1986).

A pseudodiameter may be found using level set struc-
tures. A le6el structure rooted at a node r is defined as
the partitioning of V(G) into levels l1, l2, …, lh(r) such
that
1. l1(r)={r} and
2. for i\1, li(r) is the set of all nodes that are adjacent

to nodes in li−1(r) but are not in l1(r), l2(r), …, li−1(r).
The procedure that we use to locate a pseudodiameter
is a modification of that described by Gibbs et al. (1976).
Full details are given in Reid and Scott (1999a).

Cuthill and McKee (1969) proposed that the ordering
associated with the level-set structure be used as a basis
for ordering for the variable-band method. In an earlier
paper (Scott, 1999), we looked at applying the Reverse
Cuthill–McKee algorithm to the row graph GR of A.
However, we found that improved orderings could be
obtained by using the pseudodiameter of GR as the global
ordering within the MSRO algorithm. One end s of the
pseudodiameter is chosen as the start row and is ordered
first. The remaining rows are numbered according to their
distance d(i, s) from s, with those nearest to s being
numberedfirstandrowenumberedlast.Thatis,gi ischosen
to be the distance d(i, s).

4.3.2. Example
To illustrate the MSRO method with the pseudodi-

ameter global ordering we use the matrix with the
sparsity pattern given in Fig. 1. We will use weights
(W1,W2)= (2,1). For this matrix, the lifetimes are 3, 3,
3, 5, 4, 4 and the sum of the lifetimes is 22. We observe
that the minimum possible value for the sum of the
lifetimes is nz, the number of entries in A, which is 15
for this example.

Fig. 1. The original matrix.
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Table 1
Initial priorities for MSRO method

Row d(i, 4)rcgain i Pi

24 101
12 94
25 123
04 42
24 105
36 72

by 2�W1, resulting in the matrix of Fig. 2. (rows with
the priority given as – have been reordered).

Row 5 now has the lowest priority value and so is
ordered next, bringing column 6 into the front and
making row 6 active. The priorities of rows 3 and 6,
which have entries in column 6, are decreased by W1,
giving the matrix in Fig. 3.

We next order row 6 because it has the lowest
priority value. The priority of row 3 then decreases so
that it is ordered ahead of row 1. The final reordered
matrix is given in Fig. 4. The sum of the lifetimes for
the reordered matrix is 16.

4.3.3. Spectral ordering
Spectral algorithms have been used in recent years

for profile and wavefront reduction of symmetrically
structured matrices. Barnard, Pothen and Simon (1995)
describe a spectral algorithm that associates a Lapla-
cian matrix L with a given matrix S={sij} with a
symmetric sparsity pattern,

L={lij}=

Á
Ã
Í
Ã
Ä

−1 if i" j and sij"0
0 if i" j and sij=0

%i" j �lij � if i= j.

(4.6)

An eigenvector corresponding to the smallest positive
eigenvalue of the Laplacian matrix is termed a Fiedler
6ector. The spectral permutation of the nodes of the
undirected graph GS is computed by sorting the compo-
nents of a Fiedler vector into monotonically nonin-
creasing or nondecreasing order.

For matrices A with an unsymmetric sparsity pattern,
we can apply the spectral method to the symmetric
matrix B=A�AT, whose undirected graph is the row
graph GR of A. The spectral permutation of the nodes
of this graph yields a row ordering.

Experience has shown that spectral orderings often
do well in a global sense but can perform poor locally
(see Kumfert & Pothen, 1997). We therefore use the
spectral ordering to provide a global ordering for the
priority function (4.1). Specifically, we choose the start
row to be the first row in the spectral ordering and, for
a matrix with n rows, we take the second term in the
priority function (4.1) to be

gi= (h/n)pi. (4.7)

Here pi is the position of row i in the spectral
ordering and h is the number of level-sets in the level
set structure rooted at the start row. The normalization
of pi results in gi varying up to h, which is at most the
length of the pseudodiameter. Without normalization,
the second term in the priority function would have a
much larger influence than it does when the pseudodi-
ameter is used as the global ordering.

Fig. 2. Partially ordered matrix.

Fig. 3. Partially ordered matrix.

Fig. 4. Final reordered matrix.

The start and target end rows (s, e) are chosen to be
(4,6) since, by inspection, d(4, 6)=3 and d(i, j )53,
i, j=1, 2, …, 6. The initial priorities are given in Table
1. Note that initially rcgain i is just one more than the
number of entries in row i.

Row 4 is ordered first. Only row 2 is a neighbour of
row 4 so only its priority changes. Its priority decreases
by W1 to 7. We now have two rows with a priority
value of 7 but only row 2 is active so it is ordered next.
Row 2 brings columns 4 and 5 into the front and rows
1, 3, and 5 become active. Since row 1 has an entry in
column 4, its priority decreases by W1. The priority of
row 3 is also decreased by W1 and, because row 5 has
entries in both columns 4 and 5, its priority decreases
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4.3.4. NMNC ordering
The NMNC ordering, which was discussed in Section

3.5, can also be used as the global ordering for the
second phase of the MSR0 algorithm. As for the spec-
tral ordering, we take the second term in the priority
function to be (4.7), where pi is now the position of row
i in the NMNC ordering and h is again the depth of the
level set structure rooted at the start row.

4.4. Choice of weights

The performance of the MSRO algorithms is depen-
dent on the choice of the weights (W1, W2). The de-
tailed numerical experiments performed by Scott (1999)
show that no single choice of weights is best for all
problems. Based on numerical results for a wide range
of practical problems, when the pseudodiameter is used
as the global ordering for the MSRO algorithm, Scott
recommends trying the weights (2, 1) and (32, 1) and
selecting the better result. Using the spectral ordering,
Scott proposes the weights (1, 2) and (32, 1), unless the
matrix has a short pseudodiameter. In this case, the
best results are achieved with a larger value of W2, so
that the ordering more closely follows the spectral
ordering. When the NMNC ordering is used as the
global ordering we also use the weights (1, 2) and
(32, 1) and take the better result.

4.5. Re6ersing the row order

If we assume that for a given row ordering the rows
have been relabelled 1, 2, …, n, then the reverse order-
ing assembles the rows in the order n, …, 2, 1. It can be
shown that the sum of the lifetimes is independent of
whether the rows are assembled in the given order or in
the reverse order. Moreover, Reid and Scott (1999b)
prove that the maximum and mean column frontsizes
are invariant if the row order is reversed. However, the
maximum and mean row frontsizes and the mean fron-
tal matrix size favg are, in general, different for the
reverse order. Numerical experimentation has shown
that, for some examples, favg can be significantly re-
duced by reversing a given row order while for other
examples, the converse is true. We therefore compute
the mean frontal matrix size for the MSRO orderings
and also for the reverse MSRO orderings and select the
ordering for which favg is the smaller.

5. Numerical results

In this section, we first describe the chemical engi-
neering problems that we use for testing the row order-
ing algorithms discussed in this paper and then present
numerical results.

5.1. Test problems

The test problems are listed in Table 2. Each problem
comes from chemical process engineering. Problems
marked with a † are from the University of Florida
Sparse Matrix Collection (Davis, 1997, see http://
www.cise.ufl.edu/-davis/sparse/) and those marked by ‡
are from the Harwell-Boeing Collection (Duff,
Grimes & Lewis, 1992, see http://www.cse.clrc.ac.uk/
Activity/SparseMatrices). The remaining problems
were supplied by Mark Stadtherr of the University of
Notre Dame; further details of these problems may be
found in Mallya et al. (1997b). In addition to the order
of the matrix and the number of entries in the matrix,
we give the symmetry index and information on the
row graph of the matrix (the length of the pseudodi-
ameter of the row graph, the number of edges
in the graph, and the average number of neighbours
each row has). The symmetry index of a matrix A is
defined as

s(A)=1−
nz(A+AT−D)−nz(A−D)

nz(A−D)
,

where nz(A−D) and nz(A+AT−D) denote the num-
ber of off-diagonal entries in A and A+AT,
respectively. Thus s(A) is measure of how far from
symmetry the sparsity pattern of A is. Small values
indicate a high degree of asymmetry. We see that all the
chosen test problems are highly asymmetric. The pseu-
dodiameter was computed using the MC62 code (see
Section 6).

The reported results of Camarda (1997) and Ca-
marda and Stadtherr (1998) suggest that, of the row
ordering algorithms discussed in Section 3, the most
promising approaches for unsymmetric problems are
the RMCD and NMNC algorithms. We therefore re-
strict our numerical experiments to the RMCD,
NMNC, and MSRO algorithms. In the following,
MSRO+pseudodiameter denotes the MSRO al-
gorithm with the pseudodiameter used as the global
ordering. MSRO+spectral and MSRO+NMNC are
defined similarly. For the NMNC algorithm, we use the
code of Camarda (1997), for which a complete listing is
given in his thesis. For the other algorithms, we use a
new code that will be included in the next release of the
Harwell Subroutine Library (HSL). The new code is
written in standard Fortran 77 and is called MC62. We
briefly discuss the design of MC62 in Section 6. In our
experiments involving the spectral method, the
Fiedler vector of the row graph was obtained using
Version 2.0 of the Chaco package (Hendrickson &
Leland, 1995).

Unless indicated otherwise, the numerical results
were obtained using the EPC (Edinburgh Portable
Compilers, Ltd) Fortran 90 compiler with optimization
-O running on a 143 MHz Sun Ultra 1.
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5.2. A comparison of the methods

In this section, we compare the performance of the
different row ordering algorithms. In Table 2, the mean
frontal matrix size is given. For comparison, we include
the mean frontal matrix size for the original ordering.
In Table 4, we present the sum of the lifetimes as a
percentage of the sum of the lifetimes of the original
ordering. We highlight in bold the smallest values for
each problem.

For four of the largest problems, 10cols , bayer01 ,
icomp , and 1hr71c , we were unable to obtain a
spectral ordering with the Chaco package and for these
problems no results for MSRO+spectral are available.

The main conclusion that we can draw from our
results is that, when a spectral ordering is available, the
best results are generally achieved using the MSRO+
spectral algorithm. We now examine our findings in a
little more detail. We first note that the performance of
the RMCD algorithm can vary greatly between prob-
lems. In general, all the other algorithms perform better
than RMCD: there is only one problem, meg1, for
which RMCD gives the smallest value of favg. It is
unclear why RMCD performs so well on this problem
when for a large proportion of the test problems, the
RMCD algorithm produces orderings for which the
sum of the lifetimes is actually greater than for the
original ordering.

Although more consistent, for many problems the
NMNC algorithm is only able to achieve relatively
modest reductions in the size of the frontal matrix.
However, the NMNC orderings are improved signifi-
cantly when used in conjunction with the MSRO al-
gorithm. Comparing the columns headed ‘NMNC’ and
‘MSRO+NMNC’ in Tables 3 and 4, we see that for
most problems the MSRO+NMNC algorithm outper-
forms the NMNC algorithm and, for some problems,
including 4cols and 10cols , the improvements are
dramatic.

Comparing the use of the different global orderings
with the MSRO algorithm we see that for most, but not
all, of the problems the pseudodiameter gives better
results than using the NMNC ordering, while in turn
the spectral ordering is better than the pseudodiameter.
There are only two problems, ethylene-1 and eth-
ylene-2 , for which the MSRO algorithm with the
pseudodiameter and the spectral ordering perform
poorly compared with the NMNC algorithm. To try
and gain some insight into why this is, we need to look
at the row graphs for these matrices. We see from Table
3 that for these problems and for problem meg1, the
average number of neighbours each row has is large
and, compared with the order of the matrices, the
pseudodiameter is short. It would appear that the
MSRO algorithm used with the pseudodiameter or
spectral ordering does well provided the rows have only

Table 2
The test problems

OrderIdentifier Number of entries Symmetry index Average number neighboursEdges in row graph (�103)Pseudo diameter

4cols 210940.015943 668 17.811 770
5271660.0167109 58829 49610cols 17.9

57 735 277 774 0.0002bayer01 † 154 1532 26.5
400 59.3420.003156 1966747bayer03 †

159 082 0.0016 44 1099bayer04 † 53.520 545
bayer09 † 21 2163083 0.0212 30 142 46.0
ethylene-1 80 90410 673 0.2973 21 2036 190.7

176.91832210.3020ethylene-2 78 00410 353
11 407 0.0042 57 37extr1 † 13.12837

5308 23 752 0.0041hydr1 † 54 96 24.2
icomp 18.118333010.0010301 46569 174

704490.0174 96.0156 50873371hr07c †

1hr14c † 14 270 307 858 0.0066 41 1394 97.7
381 975 0.0015 411hr17c † 173117 576 98.5

35 152 764 014 0.00151hr34c † 49 3464 98.5
70 304 1 528 092 0.00161hr71c † 72 6930 98.6

2904 58 142 0.0024meg1† 7 372 128.1
0.053713 2991048radfr1 † 37.739529

4134 78.0322540.058894 408rdist1 †

3198 56 934 0.0456rdist2 † 54 188 58.7
2398 61 896rdist3a † 0.1404 29 216 90.0
2021 0.00337353 18.738west2021 ‡ 15

† Indicates problem taken from University of Florida sparse matrix collection.
‡ Indicates from Harwell–Boeing collection.
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Table 3
The mean frontal matrix size ( favg�102) for the different reordering algorithmsa

OriginalIdentifier RMCD NMNC MSRO MSRO MSRO
+NMNC+spectral+pseudo diameter

22184cols 361 982 30 45 61
448 2422 397091 †10cols 87

1183bayer01 27 136 992 182 † 812
200bayer03 438 195 27 12 234

4162 1683 3341911 59bayer04 972
249bayer09 152 230 20 12 178

11 249 573 3910ethylene-1 24491452 213
10 496 292 2818451 569ethylene-2 67

49extr1 486 34 4 3 18
310hydr1 231 197 10 3 58

1274 847 731217 †icomp 198
5211hr07c 2180 150 62 48 130

7645 266 1531hr14c 1341076 224
11 506 275 2001329 1701hr17 255

14991hr34c 48 940 1499 283 172 472
204 070 1548 8351hr71c †1548 486

461 3068 183711 823 1715meg1 1781
36radfr1 4 5 4 4 5

1251 20 17rdist1 20146 17
13 347 11 1365 10rdist2 10

91rdist3a 8262 22 36 22 30
west2021 28179 151 4 4 40

a The smallest values are highlighted.
† Denotes spectral ordering not available.

Table 4
The sum of the lifetimes for the different reordering algorithms as a percentage of the sum of the lifetimes of the original orderinga

NMNCIdentifier MSRORMCD MSRO MSRO
+NMNC+ spectral+pseudo diameter

4cols 7071 13 15 18
61 845 †10cols 12

*bayer01 92 35 † 80
98 36 24 104bayer03 609
94 45517 18bayer04 67
94 30bayer09 24221 82
60 187631 131ethylene-1 34

*ethylene-2 71 297 119 44
82 28498 27extr1 67

200hydr1 81 17 11 35
79 25 † 42icomp *
65 47941 441hr07c 65
57 551hr14c 49* 60
54 57* 471hr17 57

*1hr34c 100 61 44 69
100 89* †1hr71c 69

62meg1 63 43 31 42
35 30 30radfr1 3033
33 29170 30rdist1 29
31 31rdist2 27947 28
51 61806 45rdist3a 51

96west2021 96 14 14 49

a The smallest values are highlighted.
* Indicates the sum of the lifetimes is more than 1000 times greater than for the original ordering.
† Denotes spectral ordering not available.

a small number of neighbours; where there is a high
degree of connectivity between the rows one of the
other algorithms may perform better and we do not

recommend using the pseudodiameter or spectral order-
ing. Note that in the case of a short pseudodiameter it
may be possible improve the performance of the
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MSRO algorithms by increasing the weight W2 (see
Scott, 1999).

A comparison of the results in Tables 3 and 4 shows
that if the best ordering is selected on the basis of the
sum of the lifetimes then for a number of problems a
different ordering is chosen than would be chosen if the
mean frontal matrix size was used. For example, for
problem meg1 the mean frontal matrix size for the
RCMD ordering is significantly smaller than for all the
other algorithms but if the sum of the lifetimes was to
be used, the MSRO+spectral ordering would be cho-
sen. Similarly, for bayer09 the sum of the lifetimes is
smaller for NMNC than for RCMD but favg for RCMD
is smaller than for NMNC. Again, for west2021 , for
RCMD and NMNC the sum of the lifetimes is 96% of
the original but the RCMD has a much smaller mean
frontal matrix size. Although the sum of the lifetimes
has been used in the past as the measure for selecting a
good ordering (Camarda, 1997), on the basis of our
findings and the results of Reid and Scott (1999b), we
recommend using the mean frontal matrix size.

5.3. Use with frontal sol6ers

As discussed in Section 1, the main motivation be-
hind this work is the need for row orderings to improve
the efficiency of frontal solvers. We now present results
that illustrate the effect on frontal solver factorization
times of preordering the rows.

5.3.1. MA42
In the Harwell Subroutine Library, the MA42package

(Duff & Scott, 1996) is a general purpose frontal solver.
The code was primarily designed for unassembled finite-
element matrices, but also includes an option for enter-
ing the assembled matrix row-by-row, and this is the
option we use here. In Table 5 we present the CPU time
(s) taken by MA42 to factorize the reordered matrices.
The timings include the i/o overhead for using direct
access files to hold the matrix factors, but do not
include the time required to reorder the rows. Partial
pivoting and Level 3 BLAS are used by MA42. In our
experiments, we use a minimum pivot block size of 16
together with a version of MA42that attempts to exploit
blocks of zeros within the front (see Scott, 1997 for
details). Once the factors have been computed, a sepa-
rate subroutine is used to perform the forward and back
substitutions needed to complete the solution. Thus any
number of systems with the same factors but different
right-hand sides can be solved for, either simultaneously
or one at a time. Timings are not included where the
results of the previous section have shown an ordering
is not as good as the original ordering.

As expected, the results demonstrate that improved
orderings generally lead to savings in the factorization
time. For most problems, we have been able to achieve
savings of more than 50% compared with the original
ordering and for some problems the factorization time

Table 5
The factorization time (s) for MA42 used with the different reordering algorithms (Sun Ultra)a

Original RMCDIdentifier NMNC MSRO MSRO MSRO
+spectral +NMNC+pseudo diameter

17.017.8 3.24cols 3.32.814.3
84.4 48.8 64.010cols 7.6 † 10.0
43.2 * 40.5bayer01 20.2 † 119

2.5 * 2.3bayer03 1.4 1.1 *
* 20.0bayer04 10.621.8 5.0 12.6

bayer09 0.9 1.3 0.9 0.5 0.4 0.9
ethylene-1 7.5 * 7.9 * * 5.1

3.0**7.7ethylene-2 *7.0
* 0.4extr1 0.30.5 0.4 0.5

1.7 2.0 1.4hydr1 0.8 0.7 1.7
icomp 15.7†11.233.2*41.4

3.53.87.4 7.1*11.81hr07c
1hr14c 23.9 * 13.1 9.2 8.1 12.6

* 23.31hr17 13.223.4 13.2 16.6
214 * *1hr34c 218 158 237
345 * *1hr71c 487 † 399

27.2 2.4 34.6meg1 20.8 14.7 21.2
0.20.20.20.4radfr1 0.20.2

*rdist1 1.31.31.31.44.7
rdist2 * 0.82.4 0.8 0.8 0.9

2.2 * 0.9rdist3a 1.1 0.9 1.1
0.20.5 0.50.4 0.30.2west2021

a The fastest times are highlighted.
* Indicates MA42 not run because original ordering is better than reordering.
† Denotes spectral ordering not available.
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Table 6
Times (s) for MA42 and MA48 (Sun Ultra)

Identifier MA48MA42

Reorder SolveFactor Solve AnalyseReorder algorithm Factor Fast
time factor

0.6 2.84cols 0.35MSRO+spectral 5.5 2.1 1.6 0.08
2.1 7.6 0.91 15.0MSRO+pseudo 4.710cols 3.2 0.20
4.9 20.2 2.62 13.4bayer01 4.3MSRO+pseudo 2.5 0.31
1.3 1.1 0.18 1.2MSRO+spectral 0.5bayer03 0.3 0.04
3.7 5.0bayer04 0.62MSRO+spectral 5.8 2.0 1.3 0.13
0.5 0.4 0.07 0.3MSRO+spectral 0.2bayer09 0.1 0.02
6.4 5.1 0.36 1.6ethylene-1 0.7MSRO+NMNC 0.4 0.07
5.8 3.0 0.24 1.6MSRO+NMNC 0.7ethylene-2 0.4 0.07
0.1 0.3 0.05 0.2extr1 0.07MSRO+spectral 0.03 0.01
0.3 0.7 0.09 0.6MSRO+spectral 0.2hydr1 0.1 0.02
6.0 11.2 1.51 1.8icomp 0.5MSRO+pseudo 0.3 0.23
4.4 3.5 0.28 7.1MSRO+spectral 4.71hr07c 4.0 0.11
8.6 8.1 0.58 15.9 8.41hr14c 7.0MSRO+spectral 0.22

10.9 13.2 0.83 20.3MSRO+spectral 12.01hr17 10.1 0.29
21.6 158 2.09 1481hr34c 231MSRO+spectral 225 0.77
0.0 345 6.10 219None 3541hr71c 347 1.42
0.1 2.4 0.25 1.3meg1 0.5MSRO+spectral 0.4 0.01
0.1 0.2 0.02 0.4MSRO+spectral 0.2radfr1 0.1 0.01
1.2 1.3 0.11 5.7rdist1 2.2MSRO+spectral 1.7 0.08
0.6 0.8 0.06 2.3MSRO+spectral 0.9rdist2 0.6 0.04
0.9 0.9 0.08 1.9 0.8 0.6 0.04rdist3a MSRO+spectral
0.1 0.2 0.03 0.1MSRO+spectral 0.03west2021 0.01 0.01

has been reduced by as much as 80%. We note however
that the savings are not always as large as the reduc-
tions in the frontsize and in the lifetimes might lead us
to expect. This is partly because MA42 is able to offset
some of the effects of a poor ordering by exploiting
zeros within the frontal matrix (see also Duff & Scott,
1997; Cliffe, Duff & Scott, 1998). Furthermore, poor
orderings lead to large frontal matrices. This results in
a higher floating-point operation count but also allows
better exploitation of Level 3 BLAS, enabling such
orderings to achieve a high Megaflop rate

We have also compared the performance of MA42
with that of the Harwell Subroutine Library sparse
solver MA48 (Duff & Reid, 1993, 1996) on the Sun
Ultra. MA48 is a general purpose Fortran 77 sparse
code that uses Gaussian elimination for solving unsym-
metric systems whose coefficient matrix need not be
square. The analyse phase first permutes the matrix to
block triangular form and then, on each submatrix of
the block diagonal, uses a Markowitz criterion for
maintaining sparsity and threshold partial pivoting for
numerical stability. A subsequent factorize phase must
then be used to generate the factors. There is a second
factorize option (‘fast’ factorize) to rapidly factorize a
matrix with the same sparsity structure as one previ-
ously factorized by the routine. The solve phase uses
the computed factors to solve for a single right-hand
side at a time. The factors are held in-core. Default
values are used for all MA48 control parameters. In
particular, the relative threshold pivot tolerance used is

0.1. Iterative refinement is not used. For the test prob-
lems used in this paper, with these settings, the accu-
racy of the solutions computed using MA48 was
comparable to those obtained using MA42.

In Table 6, we present the time to reorder the matrix,
the MA42 factor and solve times, and for MA48, the
analyse, factor, and fast factor times. The performance
of MA48 is essentially independent of the original ma-
trix ordering and so there is no need to reorder the
matrix prior to the MA48analyse phase and the reorder
time is only important when using MA42. The solve
times are for a single right-hand side. Here (and in
Table 7), for the test problems for which a spectral
ordering is available and gives the smallest frontsizes,
the reorder times are for MSRO+spectral (but the
time taken to obtain the spectral ordering is not in-
cluded as we do not currently have available a Fortran
code to do this). For ethylene-1 and ethylene-2
the times are for MSRO+NMNC, and for meg1 the
time is for RCMD. For 1hr71c the original ordering
is retained.

We see that for MA48, the analyse phase (which must
be performed once for each test problem) is more
expensive than the factor phase. For a number of
problems (including 4cols , 10cols , and the 1hr
problems), this leads to the MA48analyse+ factor time
being slower than reordering the matrix and factorizing
using MA42. As mentioned in Section 1, for many
chemical process engineering problems, a large number
of factorizations of matrices having the same sparsity
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pattern is required. In this case, the significant times are
the MA42 factor time and the MA48 factor and fast
factor times. The MA48 fast factorization uses the pivot
sequence from a previous factorization and this may
become unstable if the matrix entries are markedly
different from the earlier call. Thus even if the matrix
pattern remains unchanged, it may be necessary to
generate a new pivot sequence and it is then the factor
time that is important. For a few of problems, includ-
ing 1hr07c and 1hr34c , the MA42 factor time is less
than both the MA48 factor and fast factor times. For a
number of other problems, including radfr1 and the
rdist problems, the MA42factor times are competitive
with the MA48 factor times. But for most of our test
problems, the MA48 fast factor times are smaller than
the MA42 factor times. In addition, the solve times for
MA48are significantly less than for MA42; we comment
on this at the end of the next section.

We observe that in chemical engineering applications
the interest lies in solving for a single right-hand side
vector at a time. However, the methods described in
this paper are quite general and may be used in other
application areas where the user may want to solve for
multiple right-hand sides (for example, when using a
block method to compute selected eigenvalues of a
large sparse matrix). When solving for a number of
right-hand sides at once, MA42 uses Level 3 BLAS so
that the time for solving simultaneously for k right-
hand sides can be much less than for k separate solves.
As an illustration, for problem 4cols the MA42 time

for solving for a single right-hand side is 0.35 s and for
ten right-hand sides it is 1.22 s. For 1hr34c the
corresponding times are 2.1 and 9.0 s. For MA48 the
time for k right-hand sides is k times the single solve
time.

5.3.2. FAMP
We have also performed tests with the frontal solver

FAMP. This solver was developed at the University of
Illinois and at Cray Research, Inc. and described by
Zitney and Stadtherr (1993) and Zitney et al. (1995).
Unlike MA42, FAMP was specifically designed for as-
sembled matrices (non-element form). Moreover, while
MA42 is written in standard Fortran 77 and is fully
portable, FAMP has been finely tuned for Cray sys-
tems, including the use of assembly language kernels.
As a result, on Cray machines, FAMP is faster than
MA42. We compare the performance of FAMP on a
single processor of a Cray J932 with that of MA48. All
timings given in Table 7 are CPU times in seconds.

In Table 7 we present the time to reorder the matrix
(we use the same reordering algorithms as we reported
on for MA42in Table 6), the FAMP factor times for the
original and new orderings, and solve time for the new
ordering. For MA48, we present the analyse, factor, fast
factor, and solve times (single right-hand side). Again,
the reorder time is only significant for the frontal
solver. For FAMP, the fast factor time is only slightly
less than the factor time (see Zitney, Mallya, Davis &
Stadtherr, 1996), so we do not quote this. In Table 8,

Table 7
Times (s) for FAMP and MA48 (Cray J932)

FAMP MA48Identifier

Reorder time Factor time AnalyseSolve SolveFast factorFactor

Original order New order

4.96 1.97 0.16 0.094cols 7.84 2.96 1.37 0.06
7.68 2.41 0.42 22.210cols 9.0311.3 3.47 0.16

27.9bayer01 10.2 6.58 0.82 36.4 10.2 3.66 0.32
7.21bayer03 0.89 0.64 0.09 3.54 1.25 0.44 0.04

0.111.594.3315.90.27bayer04 2.184.3720.2
0.35 0.27 0.04 1.25bayer09 0.302.59 0.14 0.01

22.4 1.76 1.71 0.16ethylene-1 5.24 1.80 0.57 0.06
ethylene-2 0.060.591.875.070.151.111.7620.2

0.080.270.680.04 0.010.210.220.76extr1
hydr1 2.00 0.56 0.41 0.07 1.87 0.76 0.26 0.03

2.20 1.48 0.12 15.8 5.65 2.411hr07c 0.0622.8
44.9 4.71 3.21 0.221hr14c 34.1 12.1 4.85 0.11

1hr17 56.4 5.85 4.53 0.30 41.8 14.2 5.74 0.14
1hr34c 113.0 12.2 8.80 0.59 97.6 34.8 16.1 0.29

0.61 3.41 0.75 0.04meg1 2.69 1.19 0.50 0.06
0.010.150.410.950.011.10 0.11radfr1 0.19

12.5 1.23 0.80 0.07rdist1 11.1 4.17 1.74 0.03
rdist2 6.22 0.72 0.47 0.05 5.94 2.42 0.99 0.02

0.669.11rdist3a 0.010.621.724.070.040.51
0.43 0.17 0.12 0.03 0.34 0.12west2021 0.03 0.01
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Table 8
Real factor storage (�103) for FAMP and MA48a

Identifier MA48FAMP

New orderOriginal order

4cols 1220 348 300
8101251 70110cols

2710bayer01 1987 996
280bayer03 139 141

5461218 463bayer04
50bayer09 5698

703375 221ethylene-1
572ethylene-2 364 224

34extr1 2844
86108 84hydr1

8161hr07c 548 648
14461hr14c 1064 1218

15251887 15181hr17
38021hr34c 3122 3154

883meg1 168 141
39108 47radfr1

301rdist1 405624
1731307 415rdist2

325rdist3a 189 178
west2021 1734 12

a The smallest value for each problem is highlighted.

number of entries and so requires fewer operations
during the solve. Furthermore, the MA48solve is highly
tuned for solving for a single right hand side and,
whereas MA42 is a general frontal solver that was
primarily designed for finite-element applications, MA48
was specifically designed for the sort of chemical engi-
neering test problems used in this paper, that is, for
very sparse and highly asymmetric matrices.

We conclude that, with a good row ordering, frontal
schemes can provide a powerful and competitive alter-
native to general-purpose sparse solvers for highly non-
symmetric problems.

6. Design of MC62

In this section, we briefly discuss our new code MC62
that implements the MSRO algorithm. The code will be
included in HSL 2000 and is available for use now
under licence. Anyone interested in using the code (or
any of the other codes from the Harwell Subroutine
Library) may contact the author for details of terms
and conditions (or see http://www.cse.clrc.ac.uk/
Activity/HSL).

The subroutines in the MC62 package are named
according to the naming convention of HSL 2000. The
single-precision version subroutines all have names that
commence with MC62 and have one more letter. The
corresponding double-precision versions have the same
names with an additional letter D. For clarity, in the
remainder of this paper we refer only to the single-pre-
cision subroutines. There are four subroutines in the
MC62package that may be called directly by the user.
Subroutine MC62I must first be called to provide de-
fault values for the parameters that control the execu-
tion of the package. If the user wishes to use values
other than the defaults, the corresponding parameters
should be reset after the call to MC62I. The main
subroutine MC62A accepts the sparsity pattern of the
matrix A, either in sparse row format or in sparse
column format. MC62A performs full checks on the
data and calls MC62Bto compute statistics (the maxi-
mum and mean row and column frontsizes, the mean
frontal matrix size, and the sum of the lifetimes) for the
original row order. MC62Athen either
� implements the MSRO algorithm, or
� implements the RMCD algorithm, or
� implements both the MSRO and RMCD algorithm

and selects the better ordering.
The code offers both the MSRO and RCMD al-
gorithms since, as we saw in our numerical experiments
in Section 5 and in Scott (1999), RCMD can outper-
form the other algorithms if the row graph has a short
pseudodiameter. Moreover, the cost of running the
RCMD algorithm is very low.

we compare the real storage required by the factors
generated by FAMP (with and without reordering) and
by MA48. We see that reordering can substantially
reduce the factor times for the frontal solver and the
storage requirements, and this again emphasizes the
importance of obtaining good row orderings. However,
we also observe that reordering the rows is more expen-
sive on the Cray than factorizing the matrix and, if only
a single matrix factorization is needed, it is faster to use
FAMP with the original matrix ordering. Alternatively,
since the reordering is quite separate from the frontal
code, we can generate the ordering on another machine
such as the SUN that has faster integer arithmetic and
then pass the ordering to FAMP on the Cray. The
analyse phase of MA48is again more expensive than the
factor phase. For some problems, including 4cols ,
10cols , and the 1hr problems, the FAMP factor time
for the new order is less than both the MA48 factor and
fast factor times. For the remaining problems, FAMP is
faster than the MA48 factorization but slower than
MA48 fast factorization. It should however be noted
that, beyond using the vendor-supplied BLAS, MA48 is
not specifically tuned to run on the Cray. Again, solve
times using MA48 are faster than those for the frontal
code, generally by a factor of 2 or 3. There appears to
be a number of reasons why the MA48 solve outper-
forms that of FAMP and MA42. Firstly, FAMP and
MA42 have the additional overhead of reading the
factors back into main memory. Secondly, for many of
the problems, MA48 produces the factors with the least
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For the MSRO algorithm, subroutine MC62C is
called to generate the row graph. This subroutine is
also available as a separate entry. The user then has the
option of either using the pseudodiameter of the row
graph or specifying the global priority for each row. If
used, the pseudodiameter is computed using routines
from the Harwell Subroutine Library package MC60.
The weights for the priority function (4.1) may be
chosen by the user, otherwise default values based on
the recommendations of Scott (1999) are used. If more
than one set of weights is used or if both the MSRO
and RMCD orderings are computed, the best row
ordering is selected on the basis of the mean frontal
matrix size.

Subroutine MC62Bis also used to compute statistics
for the rows taken in reverse order. If the mean
frontal matrix size is smaller for the reverse order, the
reverse order is returned to the user as the new row
order. Note that MC62Bis also available as a separate
entry and by returning several statistics, the user can
select the ordering on the basis of what-he or she
considers is most important for their application. For
example, if minimising the amount of main
memory needed by the frontal solver is the primary
consideration, the user can compare orderings on the
basis of the maximum frontsizes. If minimising factor
storage is the main concern, the mean frontsizes should
be used.

7. Concluding remarks and future directions

In this paper, we have looked at the problem of
reordering the rows of a general unsymmetric matrix A
for use with frontal solvers. We have reviewed recent
algorithms and, in particular, have discussed variants of
the MSRO algorithm. This approach is based on the
row graph of A and uses a combination of a local and
a global ordering scheme. We have found that the
MSRO algorithm using the pseudodiameter or
spectral ordering works well on a wide range of prob-
lems from chemical processing applications and, in
general, produces orderings that are a substantial im-
provement on the original ordering and on the order-
ings obtained by the RMCD and NMNC algorithms.
The only problems we have found that it does not work
well on are those for which the row graph has a high
degree of connectivity which leads, in turn, to a short
pseudodiameter.

To make the new algorithms accessible to users, we
have developed a new code MC62that efficiently imple-
ments the MSRO algorithm. The design of this code
has been discussed.

The results presented for the frontal solvers
MA42 and FAMP demonstrate that a good row
ordering can lead to substantial reductions in the

time taken to factorize a matrix. Of course, reordering
the rows takes time and can dominate the overall
solution time if a single factorization of the reordered
matrix is performed (see also Scott, 1999).
However, large-scale simulation or optimization models
will typically be used many times. This is particularly
true in an on-line operations environment. Even if the
need for a matrix refactorization is relatively infre-
quent, over the lifetime of a process model the total
number of factorizations of matrices with the same
structure but different numerical values will still be
large. In this case, the cost of a single matrix reordering
represents an insignificant part of the total cost and
investing in obtaining improved orderings is well worth-
while.

A serious deficiency of the frontal method is that
there is little scope for parallelism, beyond that which
can be obtained by using the high level BLAS. One way
of overcoming this problem and allowing the multipro-
cessing architecture of parallel computers to be ex-
ploited is to extend the basic frontal algorithm to use
multiple fronts. The multiple front method uses a prob-
lem decomposition corresponding to a bordered block
diagonal matrix and factorizes each of the diagonal
blocks using the frontal method. This can be done in
parallel (see, for example, Mallya, Zitney & Stadtherr,
1997a; Mallya et al., 1997b). Having performed an
appropriate reordering to bordered block diagonal
form, the efficiency of the multiple front method will
depend on the assembly order used by the frontal
method within each block. The MSRO algorithms pre-
sented in this paper are designed for reordering all the
rows of A. Thus, when choosing which row to order
next, it is assumed that when any column index appears
for the last time the column is fully summed and so can
be eliminated. When ordering the rows within a block
this will not necessarily be the case because some
columns have entries in more than one block and so are
not fully summed within a single block. Applying the
MSRO algorithms directly to a block may not, there-
fore, produce the most appropriate row ordering. In the
future we plan to extend the ideas introduced
in this paper for ordering A to address the potentially
harder problem of row ordering for a parallel frontal
solver.
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