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SUMMARY

In �nite element simulations, the overall computing time is dominated by the time needed to solve large sparse
linear systems of equations. We report on the design and development of a parallel frontal code that can
signi�cantly reduce the wallclock time needed for the solution of these systems. The algorithm used is based
on dividing the �nite element domain into subdomains and applying the frontal method to each subdomain in
parallel. The so-called multiple front approach is shown to reduce the amount of work and memory required
compared with the frontal method and, when run on a small number of processes, achieves good speedups. The
code, HSL MP42, has been developed for the Harwell Subroutine Library (http:==www.numerical.rl.ac.uk/hsl).
It is written in Fortran 90 and, by using MPI for message passing, achieves portability across a wide range
of modern computer architectures. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Finite-element simulations involve the solution of large sparse linear systems of equations. Solving
these systems is generally the most computationally expensive step in the simulation, often requir-
ing in excess of 90 per cent of the total run time. As time-dependent three-dimensional simulations
are now commonplace, there is a need to develop algorithms and software that can be used to
e�ciently solve such problems on parallel supercomputers.
The frontal solver MA42 of Du� and Scott [1; 2] (and its predecessor MA32 of Du� [3]) was

developed for solving unsymmetric linear systems. The code can be used to solve general sparse
systems but was primarily designed for �nite-element problems. The code is included in the
Harwell Subroutine Library [4] and has been used in recent years to solve problems from a
range of application areas. A key feature of the frontal method is that, in the innermost loop of
the computation, dense linear algebra kernels can be used. In particular, these are able to exploit
high-level BLAS kernels [5]. This makes the method e�cient on a wide range of modern computer
architectures, including RISC-based processors and vector machines. Although MA42 uses level-3
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1132 J. A. SCOTT

BLAS, it does not exploit the multiprocessing architecture of parallel supercomputers. In this
paper, we report on the design and development of a new general-purpose parallel frontal code for
large-scale unsymmetric �nite-element problems. The code, which may be run on distributed or
shared memory parallel computers, exploits both multiprocessing and vector processing by using
a multiple front approach [6; 7].
This paper is organized as follows. In Section 2, we outline the multiple front method. The

design and development of our parallel frontal solver HSL MP42 is then discussed in Section 3.
Numerical results for a model problem and a practical application are presented in Section 4.
The performance of HSL MP42 is also compared with that of the frontal code MA42. Finally, in
Section 5, we make some concluding remarks.

2. MULTIPLE FRONT METHOD

In this section, we describe the multiple front method. Since the method is based on partitioning
the �nite-element domain into subdomains and applying the frontal method to each subdomain,
we �rst recall the key features of the frontal method.

2.1. The frontal method

Consider the linear system

AX =B (1)

where the n×n matrix A is large and sparse. B is an n×nrhs (nrhs¿1) matrix of right-hand sides
and X is the n×nrhs solution matrix. In this paper, we are only interested in the case where the
matrix A is an elemental matrix, that is, A is a sum of �nite-element matrices

A=
m∑
l=1
A(l) (2)

where each element matrix A(l) has non-zeros only in a few rows and columns and corresponds to
the matrix from element l. In practice, each A(l) is held in packed form as a small dense matrix
together with a list of the variables that are associated with element l, which identi�es where the
entries belong in A. Each A(l) is symmetrically structured (the list of variables is both a list of
column indices and a list of row indices) but, in the general case, is numerically unsymmetric.
Frontal schemes have their origins in the work of Irons [8] and the basis for our experience with
them is discussed by Du� [9]. The method is a variant of Gaussian elimination and involves the
matrix factorization

A=PLUQ (3)

where P and Q are permutation matrices, and L and U are lower and upper triangular matrices,
respectively. The solution process is completed by performing the forward elimination

PLY =B (4)

followed by the back-substitution

UQX =Y (5)

The main feature of the frontal method is that the contributions A(l) from the �nite elements are
assembled one at a time and the storage of the entire assembled coe�cient matrix A is avoided
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by interleaving assembly and elimination operations. This allows the computation to be performed
using a relatively small frontal matrix that can be written as(

F11 F12
F21 F22

)
(6)

where the rows and columns of F11 are fully summed, that is, there are no other entries in these
rows and columns in the overall matrix. Provided stable pivots can be chosen from F11; F11 is
factorized, multipliers are stored over F12 and the Schur complement F22 − F21F−1

11 F12 is formed.
At the next stage, another element matrix is assembled with this Schur complement to form another
frontal matrix.
The most expensive part of the computation is the formation of the Schur complement . Since

the frontal matrix is held as a dense matrix, dense linear algebra kernels can be used, and it is
this that allows the frontal method to perform at high Mega
op rates (see, for example, Du� and
Scott [6]).
By holding the matrix factors on disk (for example, in direct-access �les), the frontal method

may be implemented using only a small amount of main memory. The memory required is
dependent on the size of the largest frontal matrix. The number of 
oating-point operations and
the storage requirements for the matrix factors are also dependent on the size of the frontal matrix
at each stage of the computation. Since the size of the frontal matrix increases when a variable
enters the frontal matrix for the �rst time and decreases whenever a variable is eliminated, the
order in which the element matrices are assembled is crucial for e�ciency. A number of ele-
ment ordering algorithms have been proposed, many of which are similar to those for bandwidth
reduction of assembled matrices (see, for example, Du� et al. [10], and the references therein).

2.2. Multiple fronts

A major de�ciency of the frontal solution scheme is the lack of scope for parallelism other than
that which can be obtained within the high-level BLAS. To circumvent this shortcoming, Du�
and Scott [6] proposed allowing a (small) number of independent fronts in a somewhat similar
fashion to Benner et al. [11] and Zang and Liu [12] (see also Zone and Keunings [13] and, for
non-element problems, Mallya et al. [14]).
In the multiple front approach, the underlying �nite-element domain 
 is �rst partitioned into

non-overlapping subdomains 
i. This is equivalent to ordering the matrix A to doubly bordered
block diagonal form 



A11 C1

A22 C2

: : : ·
ANN CN

C̃1 C̃2 : : : C̃N
∑N

i=1Ei




(7)

where the diagonal blocks Aii are ni×ni and the border blocks Ci and C̃i are ni×k and k×ni,
respectively, with k.ni. A partial frontal decomposition is performed on each of the matrices(

Aii Ci

C̃i Ei

)
(8)
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This can be done in parallel. At the end of the assembly and elimination processes for each sub-
domain 
i, there will remain 16 ki6 k interface variables. These variables cannot be eliminated
since they are shared by more than one subdomain. In practice, there will also remain variables
that were not eliminated within the subdomain because of e�ciency or stability considerations.
These variables are added to the border and k is increased. If Fi is the local Schur complement for
subdomain 
i (that is, Fi holds the frontal matrix that remains when all possible eliminations on
subdomain 
i have been performed), once each of the subdomains has been dealt with, formally
we have

A=P



L1

L2
· · · ·

LN
L̃1 L̃2 · · · L̃N I






U1 Ũ1

U2 Ũ2
· · · ·

UN ŨN
· · · F


Q (9)

where the k×k matrix

F =
N∑
i=1
Fi (10)

is termed the interface matrix. The interface matrix F may also be factorized using the frontal
method. Once the interface variables have been computed, the rest of the block back-substitution
can be performed in parallel.

3. DESIGN OF A PARALLEL FRONTAL SOLVER

In this section, we consider the design of the new multiple front solver HSL MP42. A full description
of how to use the code is given in the report of Scott [15]. The code is written in Fortran 90
and MPI is used for message passing. MPI was chosen since the MPI Standard is internationally
recognized and today MPI is widely available and accepted by users of parallel computers. The
code requires a designated host process (see below). The host performs the initial analysis of
the data, distributes data to the remaining processes, collects the Schur complements, solves the
interface problem, and generally overseas the computation. With the other processes, the host also
participates in subdomain calculations. For portability, it is not assumed that there is a single-�le
system that can be accessed by all the processes. This allows the code to be used on distributed
memory parallel computers as well as on shared memory machines.
When writing a program to run HSL MP42, the user must include the �le mpif.h at the top of

his or her program. This is done by placing the line

INCLUDE ’mpif.h’

after the program statement at the start of the program. The �le mpif.h contains a number of
prede�ned constants and data types used by MPI functions. In addition, the user must initialize
MPI by calling MPI INIT on each process and must de�ne a communicator for the package.
A communicator is essentially a collection of processes that can communicate with each other.
The most basic communicator is MPI COMM WORLD, which is prede�ned by MPI and consists of all
the processes running when the program execution begins. In many applications, this communicator
is adequate.
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The module HSL MP42 has �ve separate phases:

1. Initialize
2. Analyse
3. Factorize
4. Solve
5. Finalize

Each phase must be called in order by each process (although the solve phase is optional). During
the factorize phase, the matrix factors are generated. The user may optionally hold the matrix
factors in direct-access �les. This allows large problems to be solved in environments where each
process has only a limited amount of main memory available. If element right-hand side matrices
are supplied (that is, right-hand sides of the form B=

∑m
l=1 B

(l)), the solution X is returned to the
user at the end of the factorize phase. If the right-hand sides are only available in assembled form,
or if the user wishes to use the matrix factors generated by the factorize phase to solve for further
right-hand sides, the solve phase should be called. The user may factorize more than one matrix
at the same time by running more than one instance of the package; an instance of the package is
terminated by calling the �nalize phase. After the �nalize phase and once the user has completed
any other calls to MPI routines he or she wishes to make, the user should call MPI FINALIZE to
terminate the use of MPI. We now discuss each phase in further detail.

3.1. Initialize

This phase initializes an instance of the package. The code �rst checks that MPI has been initialized
by the user, determines the number of processes being used, and the rank of each process. The
processes involved in the execution of an MPI program are identi�ed by a sequence of non-
negative contiguous integers. If there are p processes executing a program, they will have rank
0; 1; : : : ; p − 1. The host is de�ned to be the process with rank zero. The control parameters are
then initialized. These parameters control the action, including how the user wishes to supply the
element data and whether or not direct-access �les are to be used to minimize main memory
requirements. If the user wishes to use values other than the defaults, the appropriate parameters
should be reset on the host after the initialize phase and prior to calling the analyse phase. Full
details of the control parameters are given in the user documentation for HSL MP42 (see Scott [15]).

3.2. Analyse

The host �rst broadcasts the control parameters to the other processes. On the host, the user must
supply, for each subdomain 
i, a list of its elements and, for each element, a list of its variables.
The host checks this data and uses it to generate a list of the interface variables for each subdomain.
If requested, the host also orders the elements within 
i. The ordering algorithm used is that of
Scott [16]. The order generated for 
i is the order in which the elements will be assembled when
the frontal solver is applied to 
i. An estimate of the 
oating-point operation (
op) count for each
subdomain is made. This count is made by assuming that as soon as a variable becomes fully
summed it is available for elimination. It is only an estimate because, during the factorization,
stability considerations may mean delaying pivots, causing a growth in the front size and in the
actual 
op count. Moreover, the factorization attempts to take advantage of blocks of zeros within
the front to avoid unnecessary operations being performed on zeros (see Scott [17]). This can
reduce the number of 
ops needed. The estimated 
op count is broadcast to the other processes.
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Unless the user wishes to choose which process factorizes which of the subdomain matrices, this
estimate is used to assign the subdomains to processes. The subdomains are shared between the
processes so that, as far as possible, the loads (in terms of 
ops) are balanced.

3.3. Factorize

It is convenient to subdivide this phase.

• Distribution of data. The host uses the results of the analyse phase to send data to the other
processes. For each process, the host only sends data for the subdomains that have been assigned
to that process. The amount of data movement depends upon how the user has chosen to input
the element data. By default, the element matrices A(l) (and the element right-hand side matrices
B(l)) required by a process are read by that process from a direct-access �le one at a time as
they are required. This minimizes storage requirements and data movement. Alternatively, the
user may supply the element data (and element right-hand sides) in unformatted sequential
�les so that the data required by a process are again be read by that process. If this option
is used, the data for all the elements in a subdomain are read in at once, so more memory
is required but, again, movement of data between processes is minimized. Options also exist
for the host to read the element data for each of the subdomains from unformatted sequential
�les or, alternatively, the user may supply the element matrices as input arrays on the host.
The later form of input is useful if the host has su�cient memory and the overhead for using
direct access or sequential �les is high. If the data are input onto the host, there is an added
overhead of sending the appropriate data from the host to the other processes. Since the host is
also involved in the subdomain factorizations, this distribution of element data is done before
the factorization commences.

• Subdomain factorization. The processes use MA42 to perform a frontal decomposition for each
of the subdomains assigned to them. Threshold pivoting is used to maintain stability. The
stability threshold is one of the control parameters (with default value 0.01). Once all possible
eliminations have been performed, the integer data for the local Schur complement is sent to
the host. Because, in general, MA42 uses o�-diagonal pivoting, both the row and column indices
of the local Schur complement need to be stored and sent to the host. We will refer to these
indices as the row and column Schur indices. If the user wants to minimize main memory
requirements, the processes write the reals for the local Schur complements (and corresponding
right-hands sides) to sequential �les.

• Interface factorization and solve. Treating the local Schur complements as element matrices,
the host orders the subdomains and uses MA42 to perform a frontal solution of the inter-
face problem. When the local Schur complement for a subdomain is required, it is (option-
ally) read from its direct-access �le by the process to which it was assigned and sent to the
host. If element right-hand sides were not supplied, the factorize phase is complete. Other-
wise, the element right-hand sides are also read and sent as required to the host. Once the
host has completed the frontal elimination, the solution for the interface variables is broad-
cast to the processes. We observe that data must be read by the individual processes and
sent to the host because we do not assume there is a single �le system accessible by the
host.
When using MA42 to solve the interface problem, the column Schur indices are entered as

the variable indices. Because o�-diagonal pivoting is used by MA42 in the subdomains, row
permutations are needed to restore the interface variables to the diagonal of the local Schur
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complement. These permutations (together with corresponding permutations to the right-hand
side matrices) are performed by the host prior to calling the frontal factorization routine MA42B.

• Back-substitution. The processes perform back-substitution on their assigned subdomains. The
solution is then assembled on the host. Information on the frontal eliminations (including the
numbers of entries in the factors and the integer storage required by the factors) is also sent to
the host.

3.4. Solve

The solve phase is optional and should be called if the right-hand sides were not available to
the factorize phase in element form or if the user wants to use the factors to solve for further
right-hand sides. The right-hand side vectors, which must be input to the host in assembled form,
are broadcast from the host to the other processes. Forward elimination on the subdomains is
performed by the processes. Once complete, the processes send their contributions to the Schur
rows of the modi�ed right-hand side matrices to the host. The host assembles these contributions
and uses the factors for the interface problem to solve for the interface variables. The solution
for the interface variables is broadcast to the processes, which then perform back-substitution on
the subdomains. The �nal solution is assembled on the host. Note that any number of solves may
follow the factorize phase but it is more e�cient to solve for several right-hand sides at once
because this allows better advantage to be taken of high-level BLAS.

3.5. Finalize

All arrays that have been allocated by the package for the current instance are deallocated and,
optionally, all direct-access �les used to hold the matrix factors for the current instance are deleted.
This phase should be called after all other calls for the current instance of the package are complete.

3.6. Partitioning the domain

An important early decision when designing HSL MP42 was not to include software to partition the
domain 
 into subdomains within the package. Instead, the user must perform some preprocessing
and must make lists of the elements belonging to each of the subdomains 
i available on the host.
Our decision was made partly because the choice of a good partitioning is very problem dependent
and also this is still a very active research area and no single approach has yet emerged as being
ideally suited for our application. Moreover, in many practical problems, a natural partitioning
depending on the underlying geometry or physical properties of the problem is often available.
For example, for a �nite element model of an aircraft, it may be appropriate to consider the fuselage
as one or more subdomains and the wings as two further subdomains. When no such partitioning is
available, the user is advised to use a graph partitioning code, a number of which are now available
in the public domain, including Chaco [18] or METIS (http:==winter.cs.umn.edu=∼karypis=metis=).
In general, as the number of subdomains increases, so does the number of interface variables

and, as a result, the cost of solving the interface problem rises and becomes a more signi�cant
part of the total computational cost. Because our parallel frontal code solves the interface problem
using a single processor, to achieve good speedups for the overall solution process it is crucial that
the user partitions the domain into subdomains in such a way as to keep the size of the interface
problem small. Our experience has also been that to achieve good load balancing in terms of the
amount of work and memory required by each processes, the subdomains should have a similar
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number of interface variables. This can mean that the subdomains are not balanced in terms of
the number of elements they contain (see Du� and Scott [7]).

4. NUMERICAL RESULTS

In this section, we illustrate the performance of HSL MP42, �rst on a model problem and then on
three problems arising from groundwater 
ow calculations. The experiments in Sections 4.1 and
4.2 were performed on the SGI Origin 2000 and Cray T3E at Manchester, and those in Section 4.3
were carried out on the SGI Origin 2000 located at Parallab (Bergen).

4.1. Model problem

We �rst present results for a model problem designed to simulate those actually occurring in
some CFD calculations. The elements are 9-noded rectangular elements with nodes at the corners,
mid-points of the sides, and centre of the element. A parameter to the element generation routine
determines the number of variables per node. This parameter has been set to 5 for the numerical
experiments reported in this section. In Tables I–III, we present results for a square domain
subdivided into 4 and 8 subdomains. HSL MP42 is run using 1, 2, 4 and, in the case of the 8
subdomain problem, 8 processes. For the 4 subdomain problem, the subdomains are all square and
of equal size. For the 8 subdomain problem, we use a grid of 4×2 subdomains and, in this case,
to achieve good load balancing, we use subdomains of unequal size (see Du� and Scott [7]). The
‘corner’ subdomains with 2 interface boundaries are of size 15×24 elements and 30×48 elements
for the problems of order 48×48 and 96×96, respectively, and the remaining subdomains, which
have 3 interface boundaries, are of size 9×24 and 18×48 elements, respectively. In each test,
we solve for 2 right-hand sides. The element data are held in memory on the host. On the Origin
(a non-uniform access shared memory machine), �les are not used for the matrix factors; on
the T3E, the matrix factors are written to direct-access �les. We see that for su�ciently large 4
subdomain problems, for ‘Factor +Solve’ we achieve speedups of around 1.8 and 3 using 2 and
4 processors of the Origin. Slightly better speedups are achieved on the T3E. The time taken for
the interface factor and solve is independent of the number of processes. Observe that, as the
problem size increases, the percentage of time required to solve the interface problem decreases.
This emphasizes the suitability of our parallel code for solving very large problems. For the 8
subdomain problem, the speedups when using 8 processes in place of 4 processes are modest.
This is because the interface problem, which is solved on a single processor, is becoming a more
signi�cant part of the computation. For the 96×96 problem, for 8 subdomains the interface problem
involves 3920 variables and requires 10×109 
ops out of a total of 126×109 
ops, while for 4
subdomains the corresponding statistics are 1925 variables and 3×109 out of a total of 143×109

ops.

4.2. HSL MP42 versus MA42

We now compare the performance of the frontal code MA42 with that of HSL MP42 on a single
process. In Table IV, we present factor storage requirements and 
op counts for the two codes for
the model problem. MA42 treats the problem as a single domain while for HSL MP42 the domain
is divided into 4 equal subdomains and the 
op count is the total for the 4 subdomains plus the
interface problem.
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Table I. Wall clock timings (in s ) for HSL MP42 on the Origin 2000 for the model problem with 4
subdomains. The numbers in parentheses are the times taken to factor and solve the interface problem.

No. of No. of Factor +
Dimension variables processes Solve Speedup Solve Speedup

32×32 21,125 1 10.5(1.0) — 0.50 —
2 6.2 1.7 0.35 1.4
4 4.0 2.6 0.25 2.0

48×48 47,045 1 41(3.2) — 1.5 —
2 23 1.8 1.0 1.5
4 14 2.9 0.7 2.1

64×64 83,205 1 118(7.2) — 4.0 —
2 67 1.8 2.8 1.4
4 41 2.9 1.7 2.3

96×96 186,245 1 546(27) — 17.7 —
2 304 1.8 10.2 1.7
4 168 3.2 5.8 3.0

Table II. Wall clock timings (in s) for HSL MP42 on the T3E for the model problem with 4 subdomains.
The numbers in parentheses are the times taken to factor and solve the interface problem.

No. of No. of Factor+
Dimension variables processes Solve Speedup Solve Speedup

32×32 21,125 1 32.8(2.3) — 10.8 —
2 18.0 1.8 5.7 1.9
4 10.5 3.1 3.3 3.3

48×48 47,045 1 116(6) — 34 —
2 59 2.0 18 1.9
4 33 3.5 9 3.8

64×64 83,205 1 269(12) — 77 —
2 144 1.9 40 1.9
4 78 3.4 20 3.8

80×80 129,605 1 531(22) — 152 —
2 275 1.9 76 2.0
4 150 3.5 39 3.9

We see that the amount of work and storage can be signi�cantly reduced by partitioning the
domain and using a multiple front approach. The savings in the storage and 
op counts increase
with the problem size and, for large problems, the 
op count is reduced by a factor of more than 2.
In Table V, we compare CPU timings (in s) for MA42 and HSL MP42 run on a single process of
the Origin 2000 and Cray T3E. We observe that the savings in 
ops translate to signi�cant savings
in the CPU times for the factorize phase and the reduction in the number of entries in the factors
leads to savings in the solve phase. We conclude that, although the main motivation for our work
is the development of a parallel code, the code may also be of advantage on a uniprocessor.
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Table III. Wall clock timings (in s) for HSL MP42 on the Origin 2000 for the model
problem with 8 subdomains. The numbers in parentheses are the times taken to factor and

solve the interface problem.

No. of No. of Factor+
Dimension variables processes Solve Speedup Solve Speedup

48×48 47,045 1 46(9) — 2.5 —
2 28 1.6 1.3 1.9
4 20 2.3 1.0 2.5
8 14 3.3 0.8 3.1

96×96 186,245 1 539(77) — 19.5 —
2 316 1.7 10.5 1.9
4 218 2.5 6.8 2.9
8 164 3.4 5.9 3.3

Table IV. A comparison of the factor storage requirements and 
op
counts for MA42 and HSL MP42 on model problem.

Factor storage
(Kwords) Flops

Dimension Code Real Integer (∗108)
32×32 MA42 14233 995 36

MP42 11065 752 23

48×48 MA42 46390 3259 179
MP42 34725 2350 102

64×64 MA42 111686 7844 596
MP42 78625 5306 301

80×80 MA42 223070 15709 1547
MP42 149654 10077 707

Table V. A comparison of the CPU times (in s) for MA42 and HSL MP42 on model
problem (single process).

Origin 2000 Cray T3E
Factor+ Factor+

Dimension Code Solve Solve Solve Solve

32×32 MA42 15.2 0.75 18.6 1.8
MP42 9.9 0.53 13.3 1.2

48×48 MA42 66 2.0 73 5.6
MP42 39 1.5 49 3.8

64×64 MA42 215 6.7 206 13.2
MP42 114 3.8 133 8.5

80×80 MA42 630 17.8 502 25.9
MP42 269 12.3 262 16.3
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4.3. Groundwater 
ow computations

We now report results for a set of three test problems supplied by Steve Joyce of AEA Tech-
nology. These problems are from the �nite-element modelling of groundwater 
ow through a
porous medium. The problems are all de�ned on regular grids and were subdivided into 4 equal
subdomains that have a small interface by Steve Joyce. The �rst problem is a two-dimensional
problem with 40000 square elements; problems 2 and 3 are three-dimensional with 27000 and
125000 8-noded cubic elements, respectively. There is a single variable at each node, representing
pressure. The number of variables and interface variables are included in Table VII. In Table VI,
we present results for the groundwater 
ow problems run on 1, 2, and 4 processes. Again, we
achieve good speedups, although because the number of interface variables is proportionally higher
for the three-dimensional problems, the speedups for the factor times for these problems is not
quite as good as for the two-dimensional problem.

4.3.1. The e�ect of the minimum pivot block size. In a recent paper, Cli�e et al. [19] performed
experiments using the frontal solver MA42 and found that it can be advantageous to delay pivoting
until a minimum number of pivots are available. The advantage comes from using the level-3
BLAS routine GEMM with a larger internal dimension than would occur if elimination operations
are performed whenever possible after an assembly step. In Tables VII and VIII, we present results
for di�erent pivot block sizes for the groundwater 
ow test examples. These results were obtained
on a single process of the Origin 2000 at Parallab. Problem 3 required too much CPU time for
us to test each of the block sizes but it is clear from our results that using a block size greater
than 1 can lead to signi�cant savings in both time and storage. Using a minimum pivot block
size greater than 1 is particularly important when there is a single variable at each node because,
in this case, the number of pivots that become fully summed following an element assembly is
often 1 and, as a result, for each real stored in the L and U factors, one integer is stored. We
can see this by comparing the real and integer storage for a minimum pivot block size of 1. For
the groundwater 
ow problems, the integer storage is approximately equal to half the real storage,
which is equal to the storage for the L factor plus the storage for the U factor (which are both
the same). Increasing the minimum pivot block size does not add greatly to the real storage but

Table VI. Wall clock timings (in s) for HSL MP42 on 1, 2, and 4 processors of
the Origin 2000 for the groundwater 
ow problems (4 subdomains).

No. of Factor+
Problem processes Solve Speedup Solve Speedup

1 1 138 — 11.3 —
2 77 1.8 6.2 1.8
4 42 3.3 3.6 3.1

2 1 204 — 3.2 —
2 125 1.6 2.0 1.6
4 85 2.4 1.2 2.6

4 1 5823 — 48 —
2 3560 1.6 28 1.7
4 2050 2.8 15 3.2
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Table VII. The e�ect of varying the minimum pivot block size on the wall clock time (in s) for the
factorization (single process of Origin 2000).

Number of Interface Number of Minimum pivot block size
Problem variables variables elements 1 16 32 64

1 159999 859 40000 165 142 138 157
2 29785 1978 27000 559 234 204 210
3 132651 5159 125000 25328 — 5823 —

Table VIII. The e�ect of varying the minimum pivot block size on the real and integer factor storage
(in Kwords) (NT indicates not tested).

Minimum pivot block size
1 16 32 64

Problem Real Integer Real Integer Real Integer Real Integer

1 86692 43791 89083 26373 91508 25325 96676 25658
2 40164 35951 40649 2384 41184 1231 42252 650
3 474732 443181 NT NT 479002 14410 NT NT

leads to substantial savings in the integer storage. Based on our results and those of Cli�e et al.
[19] we have chosen the default minimum pivot block size in HSL MP42 to be 32, but this is a
control parameter that the user may choose to reset. Note that the experiments using HSL MP42
and MA42 reported on in the previous sections all used the default pivot block size.

5. CONCLUSIONS AND FUTURE WORK

We have designed and developed a multiple front code for solving large systems of unsymmetric
unassembled �nite-element equations in parallel. The code HSL MP42, which is in Fortran 90 with
MPI for message passing, has been written using our extensive knowledge and experience of frontal
methods and, in particular, uses the established frontal solver MA42 combined with the subdomain
element ordering algorithm of Scott [16]. Experiments have been run using a model problem and
a practical application and, in both cases, we have achieved good speedups using a small number
of processes. Numerical results have also shown that the new code can perform signi�cantly
better than MA42 on a single process. The results are particularly encouraging for two-dimensional
problems. We remark that, for non-element problems, Mallya et al. [20] reported similar �ndings.
In this paper, we have presented HSL MP42 timings for runs performed on an Origin 2000 and

on a Cray T3E. The code can, however, be run on any system with MPI available. In particular,
a cluster of workstations that can communicate using MPI could be used. Results reported by
Du� and Scott [7] illustrate that this kind of approach can be very e�ective. When working
in a network-based environment, it is important to consider how the element data are input to
the code and where the matrix factors are stored. For e�ciency, the amount of data movement
between processes needs to be minimized. Because of this HSL MA42 was designed with a number
of di�erent input data options (see Section 3.3). On a cluster of workstations, the default option
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is recommended whereby all the element data required by a process are read by that process.
In addition, if direct-access �les are needed to hold the matrix factors, the user should ensure that
the �les are held locally. This can be achieved by appropriately setting the parameters for the
direct-access �le names. Full details are given in the User Documentation.
A limitation of the new code is that the interface problem is currently solved by a frontal scheme

on a single process, making it vital for good performance that the number of interface variables
is kept small. In the future, we plan to look at solving the interface problem using other sparse
direct solvers (such as the multifrontal code MA41 of Amestoy and Du� [21] from the Harwell
Subroutine Library). An alternative approach is to assemble the local Schur complements and
treat the resulting system as a dense system that can be solved using (for example) ScaLAPACK
routines (see http:==www.netlib.org=scalapack=). The design of HSL MP42 using library subroutines
as building blocks should allow us to try di�erent solvers for the interface problem within the
existing code.
A version of the code for symmetric positive-de�nite �nite-element problems has been devel-

oped. This version is called HSL MP62.
Both HSL MP42 and HSL MP62 are available for use under licence and will be included in the

next release of the Harwell Subroutine Library [4]. Anyone interested in using the codes may
contact the author for details (or see http:==www.numerical.rl.ac.uk=hsl).
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